Solveeit Logo

Question

Question: Let l, m, n be three consecutive natural numbers (l\> m \> n). If the angle A of DABC be given by si...

Let l, m, n be three consecutive natural numbers (l> m > n). If the angle A of DABC be given by sin A

= (a2+b2+c2)(2+m2+n2)(a+bm+cn)2\frac { \left( \mathrm { a } ^ { 2 } + \mathrm { b } ^ { 2 } + \mathrm { c } ^ { 2 } \right) \left( \ell ^ { 2 } + \mathrm { m } ^ { 2 } + \mathrm { n } ^ { 2 } \right) } { ( \mathrm { a } \ell + \mathrm { bm } + \mathrm { cn } ) ^ { 2 } } and the perimeter of the

triangle is 12 unit then the area of the DABC is –

A

43\sqrt { 3 } sq. units

B

6 sq. units

C

152\frac { 15 } { 2 }sq. units

D

None of these

Answer

6 sq. units

Explanation

Solution

(a2 + b2 + c2) (l2 + m2 + n2) – (al + bm + cn)2

= (am – bl)2 + (bn – cn)2 + (cl – an)2 ³ 0

\(a2+b2+c2)/(2+m2+n2)(a+bm+cn)2\frac { \left( \mathrm { a } ^ { 2 } + \mathrm { b } ^ { 2 } + \mathrm { c } ^ { 2 } \right) / \left( \ell ^ { 2 } + \mathrm { m } ^ { 2 } + \mathrm { n } ^ { 2 } \right) } { ( \mathrm { a } \ell + \mathrm { bm } + \mathrm { cn } ) ^ { 2 } } ³ 1

but sin A £ 1 ̃(a2+b2+c2)(2+m2+n2)(a+bm+cn)2\frac { \left( \mathrm { a } ^ { 2 } + \mathrm { b } ^ { 2 } + \mathrm { c } ^ { 2 } \right) \left( \ell ^ { 2 } + \mathrm { m } ^ { 2 } + \mathrm { n } ^ { 2 } \right) } { ( \mathrm { a } \ell + \mathrm { bm } + \mathrm { cn } ) ^ { 2 } }= 1

̃ a\frac { \mathrm { a } } { \ell } = = cn\frac { \mathrm { c } } { \mathrm { n } } = l (say)

As \ell = m + 1, n = m – 1 ̃ a + b + c = l = 3m ̃ lm = 4

̃ a = l(m + 1) = 4 + l

b = 4

c = l(m – 1) = 4 – l

as sin A = 1 ̃ A = π2\frac { \pi } { 2 } , thus a2 = b2 + c2 ̃ l =1

a = 5, b = 4, c = 3

area of DABC = 12\frac { 1 } { 2 } × 4 × 3 = 6