Solveeit Logo

Question

Question: Let l, m, n be three consecutive natural numbers (l \> m \> n). If the angle A of DABC be given by ...

Let l, m, n be three consecutive natural numbers (l > m > n). If the angle A of DABC be given by

Sin A = (a2+b2+c2)(l2+m2+n2)(al+bm+cn)2\frac { \left( \mathrm { a } ^ { 2 } + \mathrm { b } ^ { 2 } + \mathrm { c } ^ { 2 } \right) \left( \mathrm { l } ^ { 2 } + \mathrm { m } ^ { 2 } + \mathrm { n } ^ { 2 } \right) } { ( \mathrm { al } + \mathrm { bm } + \mathrm { cn } ) ^ { 2 } } and the perimeter of the triangle is 12 unit then the area of the triangle ABC is

A

43\sqrt { 3 } sq. units

B

6 sq. units

C

152\frac { 15 } { 2 } sq. units

D

None of these

Answer

6 sq. units

Explanation

Solution

(a2 + b2 + c2) (l2 + m2 + n2) – (al + bm + cn)2

= (am – bl)2 + (bn – cm)2 + (cl – an)2 ≥ 0

\ (a2+b2+c2)(l2+m2+n2)(al+bm+cn)2\frac { \left( \mathrm { a } ^ { 2 } + \mathrm { b } ^ { 2 } + \mathrm { c } ^ { 2 } \right) \left( \mathrm { l } ^ { 2 } + \mathrm { m } ^ { 2 } + \mathrm { n } ^ { 2 } \right) } { ( \mathrm { al } + \mathrm { bm } + \mathrm { cn } ) ^ { 2 } } ≥ 1

But sin A ≤ 1

̃ (a2+b2+c2)(l2+m2+n2)(al+bm+cn)2\frac { \left( \mathrm { a } ^ { 2 } + \mathrm { b } ^ { 2 } + \mathrm { c } ^ { 2 } \right) \left( \mathrm { l } ^ { 2 } + \mathrm { m } ^ { 2 } + \mathrm { n } ^ { 2 } \right) } { ( \mathrm { al } + \mathrm { bm } + \mathrm { cn } ) ^ { 2 } } = 1

̃ al=bm=cn=λ\frac { \mathrm { a } } { \mathrm { l } } = \frac { \mathrm { b } } { \mathrm { m } } = \frac { \mathrm { c } } { \mathrm { n } } = \lambda(say)

As l = m + 1, n = m – 1 ̃ a + b + c = l (3m)

̃ lm = 4 ̃ a = l(m + 1)

̃ 4 + l, b = 4, c = l(m – 1) = 4 – l

As sinA = 1 ̃ A = π2\frac { \pi } { 2 }, thus a2 = b2 + c2

̃ l = 1 ̃ a = 5, b = 4, c = 3

Area of DABC = 12\frac { 1 } { 2 }× 4 × 3 = 6