Solveeit Logo

Question

Mathematics Question on Functions

Let λλ^* be the largest value of λλ for which the function fλ(x)=4λx336λx2+36x+48f_λ(x) = 4λx^3 – 36λx^2 + 36x + 48 is increasing for all xRx ∈ ℝ. Then fλ(1)+fλ(1)f_λ^* (1) + f_λ^* (– 1) is equal to :

A

36

B

48

C

64

D

72

Answer

72

Explanation

Solution

As fλ(x)=4λx336λx2\+36x\+48f_λ(x) = 4λx^3 – 36λx^2 \+ 36x \+ 48

Hence, fλ(x)=12(λx26λx+3)f_λ^{'}(x) = 12(λx^2-6λx+3)

For fλ(x)fλ(x) increasing : (6λ)212λ0(6λ)^2 – 12λ ≤ 0

λ[0,13]∴ λ ∈[0,\frac{1}{3}]

λ=13∴ λ ^∗=\frac{1}{3}

Then,

fλ(x)=43x312x2+36x+48fλ^*(x) = \frac{4}{3}x^3−12x^2+36x+48

fλ+fλ(1)=7312112∴fλ^*+fλ^*(−1)=73\frac{1}{2}−1\frac{1}{2}

= 7272.

Hence, the correct option is (D): 7272