Solveeit Logo

Question

Mathematics Question on 3D Geometry

Let L1:r=(i^j^+2k^)+λ(i^j^+2k^)L_1 : \vec{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \lambda (\hat{i} - \hat{j} + 2\hat{k}), λR\lambda \in \mathbb{R}
L2:r=(j^k^)+μ(3i^+j^+pk^)L_2 : \vec{r} = (\hat{j} - \hat{k}) + \mu (3\hat{i} + \hat{j} + p\hat{k}), μR\mu \in \mathbb{R} and
L3:r=δ(i^+mj^+nk^)L_3 : \vec{r} = \delta (\ell \hat{i} + m \hat{j} + n \hat{k}), δR\delta \in \mathbb{R}
Be three lines such that L1L_1 is perpendicular to L2L_2 and L3L_3 is perpendicular to both L1L_1 and L2L_2. Then the point which lies on L3L_3 is

A

(1,7,4)(-1, 7, 4)

B

(1,7,4)(-1, -7, 4)

C

(1,7,4)(1, 7, -4)

D

(1,7,4)(1, -7, 4)

Answer

(1,7,4)(-1, 7, 4)

Explanation

Solution

Identify the direction vectors: L1:d1=i^j^+2k^L_1: \vec{d_1} = \hat{i} - \hat{j} + 2\hat{k}; L2:d2=3i^+j^+pk^L_2: \vec{d_2} = 3\hat{i} + \hat{j} + p\hat{k}; L3:d3=i^+mj^k^L_3: \vec{d_3} = \hat{i} + m\hat{j} - \hat{k}

Since L1L_1 is perpendicular to L2L_2, we have:

d1×d2=0\vec{d_1} \times \vec{d_2} = 0.

(1)(3)+(1)(1)+(2)(p)=02+2p=0p=1.(1)(3) + (-1)(1) + (2)(p) = 0 \Rightarrow 2 + 2p = 0 \Rightarrow p = -1.

Since L3L_3 is perpendicular to both L1L_1 and L2L_2: For L3L_3 perpendicular to L1L_1:

d3×d1=0\vec{d_3} \times \vec{d_1} = 0.

(1)(1)+(m)(1)+(1)(2)=0m=1m=1.(1)(1) + (m)(-1) + (-1)(2) = 0 \Rightarrow -m = 1 \Rightarrow m = -1.

Substitute δ=1\delta = -1 in r=δ(i^j^k^)\vec{r} = \delta(\hat{i} - \hat{j} - \hat{k}) to find the point:

(1,7,4)(-1, 7, 4).