Solveeit Logo

Question

Mathematics Question on Arithmetic Progression

Let l1,l2,,l100l_1, l_2, \ldots, l_{100} be consecutive terms of an arithmetic progression with common difference d1d_1, and let w1,w2,,w100w_1, w_2, \ldots, w_{100} be consecutive terms of another arithmetic progression with common difference d2d_2, where d1d2=10d_1 d_2=10 For each i=1,2,,100i=1,2, \ldots, 100, let RlR_l be a rectangle with length lil_i, width wiw_i and area AiA i If A51A50=1000A_{51}-A_{50}=1000, then the value of A100A90A_{100}-A_{90} is ___

Answer

For the arithmetic progressions l1,l2,,l100andw1,w2,,w100l_1, l_2, \ldots, l_{100} \quad \text{and} \quad w_1, w_2, \ldots, w_{100}

Let T1=aT_1​=a and the common difference be d1d_1​, and similarly for w1,w2,,w100w_1, w_2, \ldots, w_{100}

Let T1=bT_1​=b and the common difference be d2.d_2​.

Then, A51A50=l51w51l50w50A_{51} - A_{50} = l_{51}w_{51} - l_{50}w_{50}

(a+50d1)(b+50d2)(a+49d1)(b+49d2)(a+50d_1)(b+50d_2) - (a+49d_1)(b+49d_2)

(50bd1+50ad2+2500d1d2)(49ad2+49bd1+2401d1d2)(50bd_1+50ad_2+2500d_1d_2) - (49ad_2+49bd_1+2401d_1d_2)

bd1+ad2+99d1d2=1000bd_1 + ad_2 + 99d_1d_2 = 1000

Therefore, bd1+ad2=10(as d1d2=10)bd_1 + ad_2 = 10 \quad \text{(as } d_1d_2 = 10\text{)} denoted as equation (i).(i).

Also, A100A90=l100w100l90w90A_{100} - A_{90} = l_{100}w_{100} - l_{90}w_{90}

=(a+99d1)(b+99d2)(a+89d1)(b+89d2),=(a+99d1​)(b+99d2​)−(a+89d1​)(b+89d2​),

(99bd1+99ad2+992d1d2)(89bd1+89ad2+892d1d2)(99bd_1+99ad_2+992d_1d_2) - (89bd_1+89ad_2+892d_1d_2)

10(bd1+ad2)+1880d1d210(bd_1+ad_2)+1880d_1d_2

=10(10)+18800,=10(10)+18800,

=18900.=18900.