Solveeit Logo

Question

Mathematics Question on Parabola

Let L1,L2L_1, L_2 be the lines passing through the point P(0,1)P(0, 1) and touching the parabola 9x2+12x+18y14=0.9x^2 + 12x + 18y - 14 = 0. Let QQ and RR be the points on the lines L1L_1 and L2L_2 such that the ΔPQR\Delta PQR is an isosceles triangle with base QRQR. If the slopes of the lines QRQR are m1m_1 and m2m_2, then 16(m12+m22)16\left(m_1^2 + m_2^2\right) is equal to ______.

Answer

The given parabola is:

9x2+12x+4=18(y1).9x^2 + 12x + 4 = -18(y - 1).

Rewriting:

(3x+2)2=18(y1).(3x + 2)^2 = -18(y - 1).
Sol. Figure
Equation of a line passing through P(0,1)P(0, 1) is:

y=mx+1.y = mx + 1.

Substituting y=mx+1y = mx + 1 into the parabola:

(3x+2)2=18(mx).(3x + 2)^2 = -18(mx).

Expanding:

9x2+(12+18m)x+4=0.9x^2 + (12 + 18m)x + 4 = 0.

For the line to be tangent to the parabola:

Δ=0.\Delta = 0.

Using the discriminant condition:
Solution Figure
The equation simplifies as:

(12+18m)24(9)(4)=0.(12 + 18m)^2 - 4(9)(4) = 0.

Simplify:

144+432m+324m2144=0.144 + 432m + 324m^2 - 144 = 0.

36m2+108m+36=0.36m^2 + 108m + 36 = 0.

Simplify:

m2+3m+1=0.m^2 + 3m + 1 = 0.

Solving the quadratic equation:

m=3±324(1)(1)2(1)=3±52.m = \frac{-3 \pm \sqrt{3^2 - 4(1)(1)}}{2(1)} = \frac{-3 \pm \sqrt{5}}{2}.

This gives the slopes m1=3+52m_1 = \frac{-3 + \sqrt{5}}{2} and m2=352m_2 = \frac{-3 - \sqrt{5}}{2}.

Step 2: Finding slopes of QR\overline{QR}:

For PQR\triangle PQR, the triangle is isosceles with base QR\overline{QR}. Using the tangent property, the slope of QR\overline{QR} can be derived using:

Slope of QR=tan(π2+θ2).\text{Slope of QR} = \tan \left( \frac{\pi}{2} + \frac{\theta}{2} \right).

Using symmetry, calculate θ\theta:

θ=tan1(43).\theta = \tan^{-1} \left( \frac{4}{3} \right).

Then:

m1=cot(θ2),m2=tan(θ2).m_1 = -\cot\left(\frac{\theta}{2}\right), \quad m_2 = \tan\left(\frac{\theta}{2}\right).

Finally, calculate:

m1=12,m2=2.m_1 = -\frac{1}{2}, \quad m_2 = 2.

Step 3: Calculating 16(m12+m22)16(m_1^2 + m_2^2):

16(m12+m22)=16((12)2+22).16(m_1^2 + m_2^2) = 16 \left( \left(-\frac{1}{2}\right)^2 + 2^2 \right).

=16(14+4).= 16 \left( \frac{1}{4} + 4 \right).

=16×174=68.= 16 \times \frac{17}{4} = 68.