Solveeit Logo

Question

Mathematics Question on Conic sections

Let L1L_1 be the length of the common chord of the curves x2+y2=9x^2+y^2 = 9 and y2=8x,y^2 = 8x, and L2L_2 be the length of the latus rectum of y2=8x,y^2 = 8x, then :

A

L1>L2L_1 > L_2

B

L1=L2L_1 = L_2

C

L1<L2L_1 < L_2

D

L1L2=2\frac{L_{1}}{L_{2}} = \sqrt{2}

Answer

L1<L2L_1 < L_2

Explanation

Solution

x2+y2=9&y2=8xx^{2} + y^{2} = 9 \,\&\, y^{2} = 8x
L2=L_{2} = L.R. of y2=8xL2=8y^{2} = 8x \Rightarrow L_{2} = 8
Solve x2+8x=9x=1,9x^{2} + 8x = 9 \Rightarrow x = 1,-9
x=9rejectx = -9 reject
y2=8x\therefore y^{2} = 8 \,x so y2=8y^{2} = 8
y=±8y = \pm \sqrt{8}
Point of intersection are (1,8)(1,8)\left(1, \sqrt{8}\right) \left(1, - \sqrt{8}\right)
So L1=28L_{1} = 2\sqrt{8}
L1L2=288=28=12<1\frac{L_{1}}{L_{2}} = \frac{2\sqrt{8}}{8} = \frac{2}{\sqrt{8}} = \frac{1}{\sqrt{2}} < 1
L1<L2L_{1} < L_{2}