Question
Question: Let K be the set of all real values of x where the function \(f\left( x \right)=\sin |x|-|x|+2\left(...
Let K be the set of all real values of x where the function f(x)=sin∣x∣−∣x∣+2(x−π)cos∣x∣ is not differentiable. Then the set K is equal to:
A. \left\\{ \pi \right\\}
B. \left\\{ 0 \right\\}
C. ϕ (an empty set)
D. \left\\{ 0,\pi \right\\}
Solution
We here have been given a function and we have to find the points of its non differentiability. For thus, we will first break the function at 0 as it contains |x|. Then we will find out its RHL given as RHL=h→0limhf(x+h)−f(x) and LHL given as LHL=h→0lim−hf(x−h)−f(x) at x=0. Then, we will see if LHL=RHL, then the function will be continuous. Then, we will see if both the functions we formed after breaking f(x) are a combination of two differentiable functions and hence it will be differentiable everywhere else. Following this process, we will get the required answer.
Complete step by step answer:
We here have been given the function f(x)=sin∣x∣−∣x∣+2(x−π)cos∣x∣ and we have to check for the points of non differentiability. For this, we will first break the function so that the modulus is eliminated.
Now, we know that:
∣x∣=x if x≥0∣x∣=−x if x0
Thus, we will get our function as:
f(x)=sin∣x∣−∣x∣+2(x−π)cos∣x∣
\begin{aligned}
f\left( x \right)=\left\\{ \begin{matrix}
\sin \left( x \right)-\left( x \right)+2\left( x-\pi \right)\cos \left( x \right) & \text{ if }x\ge 0 \\\
\sin \left( -x \right)-\left( -x \right)+2\left( -x-\pi \right)\cos \left( x \right) & \text{ if }x<0 \\\
\end{matrix} \right.
\end{aligned}
\begin{aligned}
f\left( x \right)=\left\\{ \begin{matrix}
\sin x-x+2\left( x-\pi \right)\cos x & \text{ if }x\ge 0 \\\
-\sin x+x-2\left( x-\pi \right)\cos x & \text{ if }x<0 \\\
\end{matrix} \right. \\\
\end{aligned}
Now, we can see that the function breaks at x=0. So first, we will check for the differentiability at x=0.
Now, we know that a function is continuous if the function’s right hand limit (RHL) is equal to its left hand limit (LHL) which is equal to its limit at that point of the function.
So, we will first calculate its RHL.
Now, we know that RHL at any point x in the function is given as:
RHL=h→0limhf(x+h)−f(x)
Here, x=0 and since h→0, x+h>0
Thus, we get the required RHL as:
RHL=h→0limh(sin(x+h)−(x+h)+2((x+h)−π)cos(x+h))−(sinx−x+2(x−π)cosx)⇒RHL=h→0limhsin(x+h)−x−h+2xcos(x+π)+2hcos(x+π)−2πcos(x+π)−sinx+x−2xcosx+2πcosx⇒RHL=h→0limhsin(x+h)−sinx+2(x+π)(cos(x+h)−cosx)+h+2hcos(x+h)⇒RHL=h→0limh2cos(x+2h)sin2h−4(x+π)sin(x+2h)sin2h+h+2hcos(x+h)Now, separating the limits we get:
⇒RHL=h→0limh2cos(x+2h)sin2h−h→0limh4(x+π)sin(x+2h)sin2h+h→0limhh+2hcos(x+h)
Now, we know that x→0limxsinx=1
Using this in the RHL, we get:
⇒RHL=h→0limh2cos(x+2h)sin2h−h→0limh4(x+π)sin(x+2h)sin2h+h→0limhh+2hcos(x+h)⇒RHL=h→0lim22h2cos(x+2h)sin2h−h→0lim22h4(x+π)sin(x+2h)sin2h+h→0limhh+2hcos(x+h)⇒RHL=h→0lim(cos(x+2h)−2(x+π)sin(x+2h)+1+2cos(x+h))
Now, putting h=0 in RHL, we get:
⇒RHL=h→0lim(cos(x+2h)−2(x+π)sin(x+2h)+1+2cos(x+h))⇒RHL=cosx−2(x+π)sinx+1+2cosx
Now, putting x=0 in RHL we get:
⇒RHL=cosx−2(x+π)sinx+1+2cosx⇒RHL=cos0−2(0+π)sin0+1+2cos0⇒RHL=1−2π(0)+1+2(1)⇒RHL=4
Thus, the RHL is 4.
Now, since the function is same for RHD and the limit at that point, we will just calculate the LHL.
Now, we know that LHL at any point is given as:
LHL=h→0lim−hf(x−h)−f(x)
Here, x=0 hence, x-h<0.
Thus, we get our LHL as:
LHL=h→0lim−h(−sin(x−h)+(x−h)+2((x−h)−π)cos(x−h))−(−sinx+x+2(x−π)cosx)⇒LHL=h→0lim−h−sin(x−h)+x−h+2xcos(x−h)−2hcos(x−h)−2πcos(x−h)+sinx−x−2xcosx+2πcosx⇒LHL=h→0lim−h−sin(x−h)+sinx+2(x+π)(cos(x−h)−cosx)+h+2hcos(x−h)⇒LHL=h→0lim−h−2cos(x−2h)sin2h+4(x+π)sin(x−2h)sin2h+h+2hcos(x−h)Now, separating the limits we get:
⇒LHL=h→0lim−h−2cos(x−2h)sin2h+h→0lim−h4(x+π)sin(x−2h)sin2h+h→0lim−hh+2hcos(x−h)
Again, using the property x→0limxsinx=1 we get: