Solveeit Logo

Question

Mathematics Question on Trigonometry

Let kk be a real number such that sin3π14cos3π14=kcosπ14\sin \dfrac{3π}{14} \cos \dfrac{3π}{14} = k \cos \dfrac{π}{14}.Then the value of 4k4k is

A

11

B

22

C

33

D

44

E

00

Answer

22

Explanation

Solution

sin3π14cos3π14=kcosπ14\sin \dfrac{3π}{14} \cos \dfrac{3π}{14} = k \cos \dfrac{π}{14}

2sin3π14cos3π14=2kcosπ14⇒2 \sin\dfrac{3π}{14} \cos \dfrac{3π}{14} = 2k \cos \dfrac{π}{14}

sin6π14=2kcosπ14⇒\sin\dfrac{6π}{14} =2k \cos \dfrac{π}{14}

(6π14+π14=7π14=π2)\therefore( \dfrac{6π}{14} +\dfrac{π}{14} = \dfrac{7π}{14} = \dfrac{π}{2} )

sin6π14=cosπ14\sin \dfrac{6π}{14} = \cos\dfrac{ π}{14}
1 = 2k
4k=4×12\therefore 4k=4×\dfrac{1}{2}
k=2\therefore k=2
So, the correct option is (B) : 2.