Question
Question: Let K be a positive real number and let A = \(\left[ {\begin{array}{*{20}{c}} {2k - 1}&{2\sqrt k...
Let K be a positive real number and let A = \left[ {\begin{array}{*{20}{c}}
{2k - 1}&{2\sqrt k }&{2\sqrt k } \\\
{2\sqrt k }&1&{ - 2k} \\\
{ - 2\sqrt k }&{2k}&{ - 1}
\end{array}} \right] and B = \left[ {\begin{array}{*{20}{c}}
0&{2k - 1}&{\sqrt k } \\\
{1 - 2k}&0&{2\sqrt k } \\\
{ - \sqrt k }&{ - 2\sqrt k }&0
\end{array}} \right]. If det (adj A) + det (adj B) = 106, then [K] is equal to.
[Note: adj M denotes the adjoint of a square matrix M and [K] denotes the largest integer less than or equal to K].
Solution
In this particular question use the concept that det (adj A) = ∣A∣n−1, where n is the order of the matrix, order of matrix in a square matrix is nothing but the number of rows or number of columns, so use these concepts to reach the solution of the question.
Complete step-by-step answer :
A = \left[ {\begin{array}{*{20}{c}}
{2k - 1}&{2\sqrt k }&{2\sqrt k } \\\
{2\sqrt k }&1&{ - 2k} \\\
{ - 2\sqrt k }&{2k}&{ - 1}
\end{array}} \right] and B = \left[ {\begin{array}{*{20}{c}}
0&{2k - 1}&{\sqrt k } \\\
{1 - 2k}&0&{2\sqrt k } \\\
{ - \sqrt k }&{ - 2\sqrt k }&0
\end{array}} \right].
Now as we know that the det (adj A) = ∣A∣n−1, where n is the order of the matrix, order of matrix in a square matrix is nothing but the number of rows or number of columns3.
So in the given matrix the order is 3, so n = 3.
⇒det(adjA)=∣A∣3−1=∣A∣2............ (1)
So first find out determinant of A we have,