Solveeit Logo

Question

Mathematics Question on Differentiability

Let k be a non-zero real number. If f(x) = \begin{cases} \frac{\left(e^x-1\right)^2}{sin\left(\frac{x}{k}\right)log\left(1+\frac{x}{4}\right)}, & \text{x \ne 0} \\\[2ex] 12, & \text{x = 0} \end{cases} is a continuous function, then the value of kk is :

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

For continuity at x=0x=0
\displaystyle\lim _{x \rightarrow \theta}\left\\{\frac{\left(e^{x}-1\right)^{2}}{\sin \left(\frac{x}{k}\right) \cdot \ln \left(1+\frac{x}{4}\right)}\right\\}=12
limx0[(ex1x)2sin(xk)k(xk)ln(1+x4)4(x4)]\Rightarrow \displaystyle\lim _{x \rightarrow 0}\left[\frac{\left(\frac{e^{x}-1}{x}\right)^{2}}{\frac{\sin \left(\frac{x}{k}\right)}{k\left(\frac{x}{k}\right)} \cdot \frac{\ln \left(1+\frac{x}{4}\right)}{4 \cdot\left(\frac{x}{4}\right)}}\right]
\Rightarrow \left\\{\frac{(1)^{2}}{\left(\frac{1}{k}\right)} \cdot \frac{1}{\frac{1}{4}(1)}\right\\}=12
4k=12k=3\Rightarrow 4 k=12 \Rightarrow k=3