Question
Mathematics Question on Differentiability
Let k be a non-zero real number. If f(x) = \begin{cases} \frac{\left(e^x-1\right)^2}{sin\left(\frac{x}{k}\right)log\left(1+\frac{x}{4}\right)}, & \text{x \ne 0} \\\[2ex] 12, & \text{x = 0} \end{cases} is a continuous function, then the value of k is :
A
1
B
2
C
3
D
4
Answer
3
Explanation
Solution
For continuity at x=0
\displaystyle\lim _{x \rightarrow \theta}\left\\{\frac{\left(e^{x}-1\right)^{2}}{\sin \left(\frac{x}{k}\right) \cdot \ln \left(1+\frac{x}{4}\right)}\right\\}=12
⇒x→0limk(kx)sin(kx)⋅4⋅(4x)ln(1+4x)(xex−1)2
\Rightarrow \left\\{\frac{(1)^{2}}{\left(\frac{1}{k}\right)} \cdot \frac{1}{\frac{1}{4}(1)}\right\\}=12
⇒4k=12⇒k=3