Solveeit Logo

Question

Quantitative Aptitude Question on Linear & Quadratic Equations

Let kk be a constant. The equations kx+y=3kx + y = 3 and 4x+ky=44x + ky = 4 have a unique solution if and only if

A

k2|k|≠2

B

k=2|k|=2

C

k2k≠2

D

k=2k=2

Answer

k2|k|≠2

Explanation

Solution

Simultaneous equation have a unique solution only if a1a2b1b2\frac{a_1}{a_2}≠\frac{b_1}{b_2}
From the given equations, a unique solution would exist only if k22k\frac{k}{2}≠\frac{2}{k}
k24k2⇒ k^2≠4⇒|k|≠2
So, the correct option is (A): k2|k|≠2