Question
Question: Let $k$ and $n$ be the positive integers and $S_k = 1^k + 2^k + 3^k + .... + n^k$. Then $^{m+1}C_1S_...
Let k and n be the positive integers and Sk=1k+2k+3k+....+nk. Then m+1C1S1+m+1C2S2+m+1C3S3+.....m+1CmSm is equal to :

A
(n+1)m+1
B
(n+1)m−n
C
(n+1)m+1−1
D
(n+1)m+1−n−1
Answer
(n+1)m+1−n−1
Explanation
Solution
We start with
Sk=1k+2k+⋯+nk.The given sum is
k=1∑m(km+1)Sk=k=1∑m(km+1)r=1∑nrk.Interchange summation:
=r=1∑nk=1∑m(km+1)rk.Recognize that
k=0∑m+1(km+1)rk=(1+r)m+1.Subtract the terms corresponding to k=0 and k=m+1 (since our summation is from 1 to m):
k=1∑m(km+1)rk=(1+r)m+1−1−rm+1.Thus, our original sum becomes:
r=1∑n[(1+r)m+1−1−rm+1]=r=1∑n(1+r)m+1−n−r=1∑nrm+1.Shift the index in the first summation by setting s=r+1:
r=1∑n(1+r)m+1=s=2∑n+1sm+1=s=1∑n+1sm+1−1.Substitute back:
=(s=1∑n+1sm+1−1)−n−r=1∑nrm+1.Notice the telescoping nature:
s=1∑n+1sm+1−r=1∑nrm+1=(n+1)m+1.Thus, the expression simplifies to:
(n+1)m+1−1−n=(n+1)m+1−n−1.