Solveeit Logo

Question

Question: Let $I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}}(x+15)^{\frac{15}{13}}}$. If $I(37) - I(24) = \fra...

Let I(x)=dx(x11)1113(x+15)1513I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}}(x+15)^{\frac{15}{13}}}. If

I(37)I(24)=14(1b1131c113)I(37) - I(24) = \frac{1}{4} \left( \frac{1}{b^{\frac{1}{13}}} - \frac{1}{c^{\frac{1}{13}}} \right), b,cNb, c \in \mathbb{N}, then 3(b+c)3(b+c) is equal to

Answer

39

Explanation

Solution

To evaluate the integral I(x)=dx(x11)1113(x+15)1513I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}}(x+15)^{\frac{15}{13}}}, we first observe the powers in the denominator. The sum of the powers is 1113+1513=2613=2\frac{11}{13} + \frac{15}{13} = \frac{26}{13} = 2. This suggests a substitution of the form u=xaxbu = \frac{x-a}{x-b}.

Let's rewrite the integrand by factoring out (x+15)2(x+15)^2 from the denominator: I(x)=dx(x11)1113(x+15)1113(x+15)413=dx((x11)(x+15))1113(x+15)413I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}}(x+15)^{\frac{11}{13}}(x+15)^{\frac{4}{13}}} = \int \frac{dx}{\left((x-11)(x+15)\right)^{\frac{11}{13}}(x+15)^{\frac{4}{13}}} This is not the most straightforward way. Instead, let's divide the numerator and denominator by (x+15)2(x+15)^2: I(x)=1(x+15)2dx(x11)1113(x+15)1513(x+15)2=1(x+15)2dx(x11x+15)1113I(x) = \int \frac{\frac{1}{(x+15)^2} dx}{\frac{(x-11)^{\frac{11}{13}}(x+15)^{\frac{15}{13}}}{(x+15)^2}} = \int \frac{\frac{1}{(x+15)^2} dx}{\left(\frac{x-11}{x+15}\right)^{\frac{11}{13}}}

Now, let u=x11x+15u = \frac{x-11}{x+15}. Differentiating uu with respect to xx: du=ddx(x11x+15)dx=(x+15)(1)(x11)(1)(x+15)2dxdu = \frac{d}{dx}\left(\frac{x-11}{x+15}\right) dx = \frac{(x+15)(1) - (x-11)(1)}{(x+15)^2} dx du=x+15x+11(x+15)2dx=26(x+15)2dxdu = \frac{x+15-x+11}{(x+15)^2} dx = \frac{26}{(x+15)^2} dx From this, we have dx(x+15)2=126du\frac{dx}{(x+15)^2} = \frac{1}{26} du.

Substitute uu and dudu into the integral: I(x)=1u1113126du=126u1113duI(x) = \int \frac{1}{u^{\frac{11}{13}}} \cdot \frac{1}{26} du = \frac{1}{26} \int u^{-\frac{11}{13}} du Now, integrate u1113u^{-\frac{11}{13}}: u1113du=u1113+11113+1+C=u213213+C=132u213+C\int u^{-\frac{11}{13}} du = \frac{u^{-\frac{11}{13}+1}}{-\frac{11}{13}+1} + C = \frac{u^{\frac{2}{13}}}{\frac{2}{13}} + C = \frac{13}{2} u^{\frac{2}{13}} + C Substitute this back into the expression for I(x)I(x): I(x)=126132u213+C=14u213+CI(x) = \frac{1}{26} \cdot \frac{13}{2} u^{\frac{2}{13}} + C = \frac{1}{4} u^{\frac{2}{13}} + C Finally, substitute back u=x11x+15u = \frac{x-11}{x+15}: I(x)=14(x11x+15)213+CI(x) = \frac{1}{4} \left(\frac{x-11}{x+15}\right)^{\frac{2}{13}} + C

Now we need to evaluate I(37)I(24)I(37) - I(24). For definite integrals, the constant CC cancels out. I(37)=14(371137+15)213=14(2652)213=14(12)213I(37) = \frac{1}{4} \left(\frac{37-11}{37+15}\right)^{\frac{2}{13}} = \frac{1}{4} \left(\frac{26}{52}\right)^{\frac{2}{13}} = \frac{1}{4} \left(\frac{1}{2}\right)^{\frac{2}{13}} I(24)=14(241124+15)213=14(1339)213=14(13)213I(24) = \frac{1}{4} \left(\frac{24-11}{24+15}\right)^{\frac{2}{13}} = \frac{1}{4} \left(\frac{13}{39}\right)^{\frac{2}{13}} = \frac{1}{4} \left(\frac{1}{3}\right)^{\frac{2}{13}} Subtracting I(24)I(24) from I(37)I(37): I(37)I(24)=14[(12)213(13)213]I(37) - I(24) = \frac{1}{4} \left[ \left(\frac{1}{2}\right)^{\frac{2}{13}} - \left(\frac{1}{3}\right)^{\frac{2}{13}} \right] I(37)I(24)=14[1221313213]I(37) - I(24) = \frac{1}{4} \left[ \frac{1}{2^{\frac{2}{13}}} - \frac{1}{3^{\frac{2}{13}}} \right] We can rewrite the terms in the form k113k^{\frac{1}{13}}: 2213=(22)113=41132^{\frac{2}{13}} = (2^2)^{\frac{1}{13}} = 4^{\frac{1}{13}} 3213=(32)113=91133^{\frac{2}{13}} = (3^2)^{\frac{1}{13}} = 9^{\frac{1}{13}} So, I(37)I(24)=14[1411319113]I(37) - I(24) = \frac{1}{4} \left[ \frac{1}{4^{\frac{1}{13}}} - \frac{1}{9^{\frac{1}{13}}} \right] The problem states that I(37)I(24)=14(1b1131c113)I(37) - I(24) = \frac{1}{4} \left( \frac{1}{b^{\frac{1}{13}}} - \frac{1}{c^{\frac{1}{13}}} \right). Comparing the two expressions, we get b=4b=4 and c=9c=9. Both bb and cc are natural numbers, as required.

Finally, we need to find the value of 3(b+c)3(b+c): 3(b+c)=3(4+9)=3(13)=393(b+c) = 3(4+9) = 3(13) = 39

The final answer is 39\boxed{39}.

Explanation of the solution:

  1. Identify the integral type: The integral is of the form dx(xa)m(xb)n\int \frac{dx}{(x-a)^m (x-b)^n} where m+nm+n is an integer (11/13+15/13=211/13 + 15/13 = 2). This suggests a substitution u=xaxbu = \frac{x-a}{x-b}.
  2. Choose substitution: Let u=x11x+15u = \frac{x-11}{x+15}.
  3. Calculate dudu: Find the derivative of uu with respect to xx, which is du=26(x+15)2dxdu = \frac{26}{(x+15)^2} dx.
  4. Rewrite integrand: Express the original integrand in terms of uu and dudu. This involves dividing the numerator and denominator by (x+15)2(x+15)^2.
  5. Integrate: The integral transforms into 126u1113du\frac{1}{26} \int u^{-\frac{11}{13}} du, which evaluates to 14u213\frac{1}{4} u^{\frac{2}{13}}.
  6. Substitute back: Replace uu with x11x+15\frac{x-11}{x+15} to get I(x)=14(x11x+15)213I(x) = \frac{1}{4} \left(\frac{x-11}{x+15}\right)^{\frac{2}{13}}.
  7. Evaluate definite integral: Calculate I(37)I(37) and I(24)I(24) and find their difference.
  8. Compare and solve: Match the result with the given form 14(1b1131c113)\frac{1}{4} \left( \frac{1}{b^{\frac{1}{13}}} - \frac{1}{c^{\frac{1}{13}}} \right) to find b=4b=4 and c=9c=9.
  9. Calculate final expression: Compute 3(b+c)3(b+c).

The final answer is 39\boxed{39}.