Solveeit Logo

Question

Question: Let I<sub>n</sub>= \(\int_{}^{}\frac{dx}{(x^{2} + a^{2})^{n}}\), where n Ī N and n \> 1. If I<sub>n<...

Let In= dx(x2+a2)n\int_{}^{}\frac{dx}{(x^{2} + a^{2})^{n}}, where n Ī N and n > 1. If In and In – 1 are related by the relation PIn = x(x2+a2)n1\frac{x}{(x^{2} + a^{2})^{n–1}} + Q In – 1. Then P and Q are respectively given by –

A

(2n – 1)a2, 2n – 3

B

2a2 (n – 1), 2n – 3

C

a2 (n + 1), 2n + 3

D

None of these

Answer

2a2 (n – 1), 2n – 3

Explanation

Solution

In = dx(x2+a2)n\int_{}^{}\frac{dx}{(x^{2} + a^{2})^{n}} = 1(x2+a2)n\frac{1}{(x^{2} + a^{2})^{n}} .

x – (n)2x(x2+a2)n+1\int_{}^{}\frac{( - n)2x}{(x^{2} + a^{2})^{n + 1}} . xdx

[Integrating by parts using 1 as second function]

\ In = x(x2+a2)n\frac{x}{(x^{2} + a^{2})^{n}} + 2n x2+a2a2(x2+a2)n+1\int_{}^{}\frac{x^{2} + a^{2} - a^{2}}{(x^{2} + a^{2})^{n + 1}} dx

= x(x2+a2)n\frac { x } { \left( x ^ { 2 } + a ^ { 2 } \right) ^ { n } } + 2n(In – a2In+1)

Ž 2na2In+1 = x(x2+a2)\frac{x}{(x^{2} + a^{2})} + (2n – 1)In Replace n by n – 1,

then 2(n – 1)a2 In = x(x2+a2)n1\frac{x}{(x^{2} + a^{2})^{n - 1}} + (2n – 3)In–1