Solveeit Logo

Question

Question: Let I<sub>n</sub> = \(\int _ { 0 } ^ { \pi / 4 } \tan ^ { n }\) x dx. Then I<sub>2</sub> + I<sub>4<...

Let In = 0π/4tann\int _ { 0 } ^ { \pi / 4 } \tan ^ { n } x dx. Then I2 + I4, I3 + I5, I4 + I6, I5 + I7, …… are in –

A

A.P.

B

G.P.

C

H.P.

D

None of these

Answer

H.P.

Explanation

Solution

We have for r ³ 1,

Ir + Ir + 2 = 0π/4\int _ { 0 } ^ { \pi / 4 }tanr x (1 + tan2 x)dx

= 0π/4\int _ { 0 } ^ { \pi / 4 }tanr x sec2 x dx

= tanr + 1 x ]0π/4_ { 0 } ^ { \pi / 4 } =

Thus, the given sequence becomes, 13,14,15,16,\frac { 1 } { 3 } , \frac { 1 } { 4 } , \frac { 1 } { 5 } , \frac { 1 } { 6 } , \ldots

Which is clearly in H.P.