Question
Question: Let \(\int_{}^{}{g(x)}dx\) = F(x), then \(\int_{}^{}{x^{3}g(x^{2})dx}\) equals to –...
Let ∫g(x)dx = F(x), then ∫x3g(x2)dx equals to –
A
21 [x2 (F(x))2 – ∫(F(x))2dx]
B
21 [x2 F(x2) – ∫(F(x2))d (x2)]
C
21 [x2 F(x) – 21 ∫(F(x))2dx]
D
None of these
Answer
21 x<sup>2</sup> F(x<sup>2</sup>) – $\int_{}^{}{(F(x^{2}))}$d (x<sup>2</sup>)
Explanation
Solution
∫x⋅x2g(x2)dx ̃ Let x2 = t ̃
=21[tF(t)–∫F(t)dt] = 21[x2 F(x2)–]
∫x⋅x2g(x2)dx ̃ Let x2 = t ̃
=21[tF(t)–∫F(t)dt] = 21[x2 F(x2)–]
∫x⋅x2g(x2)dx ̃ Let x2 = t ̃
=21[tF(t)–∫F(t)dt] = 21[x2 F(x2)–]