Solveeit Logo

Question

Question: Let \(\int_{}^{}{g(x)}dx\) = F(x), then \(\int_{}^{}{x^{3}g(x^{2})dx}\) equals to –...

Let g(x)dx\int_{}^{}{g(x)}dx = F(x), then x3g(x2)dx\int_{}^{}{x^{3}g(x^{2})dx} equals to –

A

12\frac{1}{2} [x2 (F(x))2(F(x))2\int_{}^{}{(F(x))^{2}}dx]

B

12\frac{1}{2} [x2 F(x2) – (F(x2))\int_{}^{}{(F(x^{2}))}d (x2)]

C

12\frac{1}{2} [x2 F(x) – 12\frac { 1 } { 2 } (F(x))2\int_{}^{}{(F(x))^{2}}dx]

D

None of these

Answer

12\frac{1}{2} x<sup>2</sup> F(x<sup>2</sup>) – $\int_{}^{}{(F(x^{2}))}$d (x<sup>2</sup>)

Explanation

Solution

xx2g(x2)dx\int x \cdot x ^ { 2 } g \left( x ^ { 2 } \right) d x ̃ Let x2 = t ̃

=12\frac { 1 } { 2 }[tF(t)–F(t)dt\int \mathrm { F } ( \mathrm { t } ) \mathrm { dt }] = 12\frac { 1 } { 2 }[x2 F(x2)–]

xx2g(x2)dx\int x \cdot x ^ { 2 } g \left( x ^ { 2 } \right) d x ̃ Let x2 = t ̃

=12\frac { 1 } { 2 }[tF(t)–F(t)dt\int \mathrm { F } ( \mathrm { t } ) \mathrm { dt }] = 12\frac { 1 } { 2 }[x2 F(x2)–]

xx2g(x2)dx\int x \cdot x ^ { 2 } g \left( x ^ { 2 } \right) d x ̃ Let x2 = t ̃

=12\frac { 1 } { 2 }[tF(t)–F(t)dt\int \mathrm { F } ( \mathrm { t } ) \mathrm { dt }] = 12\frac { 1 } { 2 }[x2 F(x2)–]