Solveeit Logo

Question

Question: Let $\int_{0}^{a} \frac{cot^{-1}(e^x)+cot^{-1}(e^{-x})}{tan^{-1}a+tan^{-1}x} \cdot \frac{dx}{x^2+1} ...

Let 0acot1(ex)+cot1(ex)tan1a+tan1xdxx2+1=πplnq\int_{0}^{a} \frac{cot^{-1}(e^x)+cot^{-1}(e^{-x})}{tan^{-1}a+tan^{-1}x} \cdot \frac{dx}{x^2+1} = \frac{\pi}{p} \ln q, (a > 0) where p, q \in N, then find the minimum value of (p+q)_____

Answer

4

Explanation

Solution

Solution Explanation

  1. Simplify the Numerator:
    Note that

    cot1(ex)=tan1(ex),cot1(ex)=tan1(ex)\cot^{-1}(e^x)=\tan^{-1}(e^{-x}),\quad \cot^{-1}(e^{-x})=\tan^{-1}(e^{x})

    Hence,

    cot1(ex)+cot1(ex)=tan1(ex)+tan1(ex)=π2(since tan1(u)+tan1(1/u)=π2 for u>0).\cot^{-1}(e^x)+\cot^{-1}(e^{-x})=\tan^{-1}(e^x)+\tan^{-1}(e^{-x})=\frac{\pi}{2} \quad \text{(since } \tan^{-1}(u)+\tan^{-1}(1/u)=\frac{\pi}{2}\text{ for } u>0\text{)}.
  2. Rewrite the Integral:
    The integral becomes

    I=π20a1tan1(a)+tan1(x)dx1+x2.I=\frac{\pi}{2}\int_0^a \frac{1}{\tan^{-1}(a)+\tan^{-1}(x)}\frac{dx}{1+x^2}.
  3. Substitution:
    Set

    u=tan1(x),du=dx1+x2.u=\tan^{-1}(x),\quad du=\frac{dx}{1+x^2}.

    When x=0x=0, u=0u=0; when x=ax=a, u=tan1(a)u=\tan^{-1}(a).
    Thus,

    I=π20tan1(a)dutan1(a)+u.I=\frac{\pi}{2}\int_0^{\tan^{-1}(a)} \frac{du}{\tan^{-1}(a)+u}.
  4. Evaluate the Integral:
    The integral

    duA+u=lnA+u+C,where A=tan1(a).\int \frac{du}{A+u}=\ln|A+u| + C,\quad \text{where } A=\tan^{-1}(a).

    Compute:

    0tan1(a)dutan1(a)+u=ln(tan1(a)+tan1(a))ln(tan1(a))=ln2tan1(a)tan1(a)=ln2.\int_0^{\tan^{-1}(a)} \frac{du}{\tan^{-1}(a)+u} = \ln\Bigl(\tan^{-1}(a)+\tan^{-1}(a)\Bigr)-\ln\Bigl(\tan^{-1}(a)\Bigr) =\ln\frac{2\,\tan^{-1}(a)}{\tan^{-1}(a)}=\ln 2.

    Therefore,

    I=π2ln2.I=\frac{\pi}{2}\ln2.
  5. Compare with Given Form:
    The expression is given as

    I=πplnq.I=\frac{\pi}{p}\ln q.

    Equate:

    πplnq=π2ln2p=2andq=2.\frac{\pi}{p}\ln q=\frac{\pi}{2}\ln2 \quad \Longrightarrow \quad p=2\quad \text{and}\quad q=2.

    Hence,

    p+q=2+2=4.p+q=2+2=4.

Answer

4


Subject, Chapter, and Topic

  • Subject: Mathematics
  • Chapter: Integration (especially Inverse Trigonometric Functions)
  • Topic: Integration using substitution and inverse trigonometric identities

Difficulty Level: Easy

Question Type: integer