Question
Question: Let $\int_{0}^{a} \frac{cot^{-1}(e^x)+cot^{-1}(e^{-x})}{tan^{-1}a+tan^{-1}x} \cdot \frac{dx}{x^2+1} ...
Let ∫0atan−1a+tan−1xcot−1(ex)+cot−1(e−x)⋅x2+1dx=pπlnq, (a > 0) where p, q ∈ N, then find the minimum value of (p+q)_____
Answer
4
Explanation
Solution
Solution Explanation
-
Simplify the Numerator:
cot−1(ex)=tan−1(e−x),cot−1(e−x)=tan−1(ex)
Note thatHence,
cot−1(ex)+cot−1(e−x)=tan−1(ex)+tan−1(e−x)=2π(since tan−1(u)+tan−1(1/u)=2π for u>0). -
Rewrite the Integral:
I=2π∫0atan−1(a)+tan−1(x)11+x2dx.
The integral becomes -
Substitution:
u=tan−1(x),du=1+x2dx.
SetWhen x=0, u=0; when x=a, u=tan−1(a).
I=2π∫0tan−1(a)tan−1(a)+udu.
Thus, -
Evaluate the Integral:
∫A+udu=ln∣A+u∣+C,where A=tan−1(a).
The integralCompute:
∫0tan−1(a)tan−1(a)+udu=ln(tan−1(a)+tan−1(a))−ln(tan−1(a))=lntan−1(a)2tan−1(a)=ln2.Therefore,
I=2πln2. -
Compare with Given Form:
I=pπlnq.
The expression is given asEquate:
pπlnq=2πln2⟹p=2andq=2.Hence,
p+q=2+2=4.
Answer
4
Subject, Chapter, and Topic
- Subject: Mathematics
- Chapter: Integration (especially Inverse Trigonometric Functions)
- Topic: Integration using substitution and inverse trigonometric identities
Difficulty Level: Easy
Question Type: integer