Question
Mathematics Question on limits and derivatives
Let ∫logea4ex−1dx=6π. Then eα and e−α are the roots of the equation:
A
2x2−5x+2=0
B
x2−2x−8=0
C
2x2−5x−2=0
D
x2+2x−8=0
Answer
2x2−5x+2=0
Explanation
Solution
Given: ∫logeαloge4ex−1dx=6π.
Let: ex−1=t2⟹exdx=2tdtanddx=t2+12tdt.
Substituting into the integral: ∫ex−1dx=∫(t2+1)⋅t2tdt=∫t2+12dt=2tan−1t.
Reverting the substitution: 2tan−1(ex−1)logeαloge4.
Evaluating at the limits: 2[tan−1(eloge4−1)−tan−1(eα−1)]=6π. Simplifying: 2[tan−1(3)−tan−1(eα−1)]=6π.
Dividing by 2: tan−1(3)−tan−1(eα−1)=12π.
Since tan−1(3)=3π, we have: 3π−tan−1(eα−1)=12π.
Rearranging: tan−1(eα−1)=4π.
Thus: eα−1=1⟹eα−1=1⟹eα=2.
Therefore: e−α=21.
The roots eα=2 and e−α=21 satisfy the equation: x2−(2+21)x+1=0⟹2x2−5x+2=0.
Therefore: 2x2−5x+2=0.