Solveeit Logo

Question

Mathematics Question on limits and derivatives

Let logea4dxex1=π6.\int_{\log_e a}^{4} \frac{dx}{\sqrt{e^x - 1}} = \frac{\pi}{6}. Then eαe^\alpha and eαe^{-\alpha} are the roots of the equation:

A

2x25x+2=02x^2 - 5x + 2 = 0

B

x22x8=0x^2 - 2x - 8 = 0

C

2x25x2=02x^2 - 5x - 2 = 0

D

x2+2x8=0x^2 + 2x - 8 = 0

Answer

2x25x+2=02x^2 - 5x + 2 = 0

Explanation

Solution

Given: logeαloge4dxex1=π6.\int_{\log_e \alpha}^{\log_e 4} \frac{dx}{\sqrt{e^x - 1}} = \frac{\pi}{6}.

Let: ex1=t2    exdx=2tdtanddx=2tdtt2+1.e^x - 1 = t^2 \implies e^x dx = 2t dt \quad \text{and} \quad dx = \frac{2t dt}{t^2 + 1}.

Substituting into the integral: dxex1=2tdt(t2+1)t=2dtt2+1=2tan1t.\int \frac{dx}{\sqrt{e^x - 1}} = \int \frac{2t dt}{(t^2 + 1) \cdot t} = \int \frac{2 dt}{t^2 + 1} = 2 \tan^{-1} t.

Reverting the substitution: 2tan1(ex1)logeαloge4.2 \tan^{-1} (\sqrt{e^x - 1}) \Big|_{\log_e \alpha}^{\log_e 4}.

Evaluating at the limits: 2[tan1(eloge41)tan1(eα1)]=π6.2 \left[ \tan^{-1} \left( \sqrt{e^{\log_e 4} - 1} \right) - \tan^{-1} \left( \sqrt{e^\alpha - 1} \right) \right] = \frac{\pi}{6}. Simplifying: 2[tan1(3)tan1(eα1)]=π6.2 \left[ \tan^{-1} (\sqrt{3}) - \tan^{-1} (\sqrt{e^\alpha - 1}) \right] = \frac{\pi}{6}.

Dividing by 2: tan1(3)tan1(eα1)=π12.\tan^{-1} (\sqrt{3}) - \tan^{-1} (\sqrt{e^\alpha - 1}) = \frac{\pi}{12}.

Since tan1(3)=π3\tan^{-1} (\sqrt{3}) = \frac{\pi}{3}, we have: π3tan1(eα1)=π12.\frac{\pi}{3} - \tan^{-1} (\sqrt{e^\alpha - 1}) = \frac{\pi}{12}.

Rearranging: tan1(eα1)=π4.\tan^{-1} (\sqrt{e^\alpha - 1}) = \frac{\pi}{4}.

Thus: eα1=1    eα1=1    eα=2.\sqrt{e^\alpha - 1} = 1 \implies e^\alpha - 1 = 1 \implies e^\alpha = 2.

Therefore: eα=12.e^{-\alpha} = \frac{1}{2}.

The roots eα=2e^\alpha = 2 and eα=12e^{-\alpha} = \frac{1}{2} satisfy the equation: x2(2+12)x+1=0    2x25x+2=0.x^2 - \left( 2 + \frac{1}{2} \right) x + 1 = 0 \implies 2x^2 - 5x + 2 = 0.

Therefore: 2x25x+2=0.2x^2 - 5x + 2 = 0.