Solveeit Logo

Question

Question: Let \[\int {g\left( x \right)} dx = F\left( x \right)\]. Then, \[\int {{x^3}g\left( {{x^2}} \right)}...

Let g(x)dx=F(x)\int {g\left( x \right)} dx = F\left( x \right). Then, x3g(x2)dx=\int {{x^3}g\left( {{x^2}} \right)} dx =
(a) 12[x2(F(x))2(F(x))2dx]\dfrac{1}{2}\left[ {{x^2}{{\left( {F\left( x \right)} \right)}^2} - \int {{{\left( {F\left( x \right)} \right)}^2}} dx} \right]
(b) 12[x2F(x)2(F(x2))d(x2)]\dfrac{1}{2}\left[ {{x^2}F{{\left( x \right)}^2} - \int {\left( {F\left( {{x^2}} \right)} \right)} d\left( {{x^2}} \right)} \right]
(c) 12[x2F(x)12(F(x))2dx]\dfrac{1}{2}\left[ {{x^2}F\left( x \right) - \dfrac{1}{2}\int {{{\left( {F\left( x \right)} \right)}^2}} dx} \right]
(d) None of these

Explanation

Solution

Here, we need to find the value of the given integral. We will use a substitution method to simplify the expression to be integrated. Then, we will use integration by parts and the given information to find the required value of the integral.

Formula Used:
We will use the formula of integration by parts, the integral of the product of two differentiable functions of xx can be written as uvdx=uvdx(d(u)dx×vdx)dx\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} , where uu and vv are the differentiable functions of xx.

Complete step-by-step answer:
We will use substitution method to simplify the given integral.
Rewriting the given integral, we get
x3g(x2)dx=xx2g(x2)dx\Rightarrow \int {{x^3}g\left( {{x^2}} \right)} dx = \int {x \cdot {x^2}g\left( {{x^2}} \right)} dx
Let x2=t{x^2} = t.
Differentiate both sides with respect to xx, we get
2x=dtdx\Rightarrow 2x = \dfrac{{dt}}{{dx}}
Multiplying both sides by dxdx, we get
2xdx=dt\Rightarrow 2xdx = dt
Dividing both sides by 2, we get
xdx=12dt\Rightarrow xdx = \dfrac{1}{2}dt
Substituting x2=t{x^2} = t and xdx=12dtxdx = \dfrac{1}{2}dt in the equation x3g(x2)dx=xx2g(x2)dx\int {{x^3}g\left( {{x^2}} \right)} dx = \int {x \cdot {x^2}g\left( {{x^2}} \right)} dx, we get
x3g(x2)dx=12tg(t)dt\Rightarrow \int {{x^3}g\left( {{x^2}} \right)} dx = \int {\dfrac{1}{2}tg\left( t \right)} dt
Therefore, we get
x3g(x2)dx=12tg(t)dt\Rightarrow \int {{x^3}g\left( {{x^2}} \right)} dx = \dfrac{1}{2}\int {tg\left( t \right)} dt
Thus, we have simplified the expression within the integral.
Now, we will integrate the simplified function using integration by parts.
Using integration by parts, the integral of the product of two differentiable functions of xx can be written as uvdx=uvdx(d(u)dx×vdx)dx\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} , where uu and vv are the differentiable functions of xx.
Let uu be tt and vv be g(t)g\left( t \right).
Therefore, by integrating tg(t)dt\int {tg\left( t \right)} dt by parts, we get
\Rightarrow \int {tg\left( t \right)} dt = t\int {\left[ {g\left( t \right)} \right]} dt - \int {\left[ {\dfrac{{d\left( t \right)}}{{dt}} \times \int {\left\\{ {g\left( t \right)} \right\\}} dt} \right]} dt
The derivative of a variable with respect to itself is always 1.
Thus, we get
\Rightarrow \int {tg\left( t \right)} dt = t\int {\left[ {g\left( t \right)} \right]} dt - \int {\left[ {1 \times \int {\left\\{ {g\left( t \right)} \right\\}} dt} \right]} dt
Multiplying the terms, we get
\Rightarrow \int {tg\left( t \right)} dt = t\int {\left[ {g\left( t \right)} \right]} dt - \int {\left[ {\int {\left\\{ {g\left( t \right)} \right\\}} dt} \right]} dt
Now, it is given that g(x)dx=F(x)\int {g\left( x \right)} dx = F\left( x \right).
We know that changing the variable would not change the value of the integral. This can be written as f(x)dx=f(t)dt\int {f\left( x \right)} dx = \int {f\left( t \right)} dt.
Therefore, substituting x=tx = t in the equation g(x)dx=F(x)\int {g\left( x \right)} dx = F\left( x \right), we get
g(t)dt=F(t)\Rightarrow \int {g\left( t \right)} dt = F\left( t \right)
Substituting g(t)dt=F(t)\int {g\left( t \right)} dt = F\left( t \right) in the equation \int {tg\left( t \right)} dt = t\int {\left[ {g\left( t \right)} \right]} dt - \int {\left[ {\int {\left\\{ {g\left( t \right)} \right\\}} dt} \right]} dt, we get
tg(t)dt=t×F(t)[F(t)]dt\Rightarrow \int {tg\left( t \right)} dt = t \times F\left( t \right) - \int {\left[ {F\left( t \right)} \right]} dt
Substituting tg(t)dt=t×F(t)[F(t)]dt\int {tg\left( t \right)} dt = t \times F\left( t \right) - \int {\left[ {F\left( t \right)} \right]} dt in the equation x3g(x2)dx=12tg(t)dt\int {{x^3}g\left( {{x^2}} \right)} dx = \dfrac{1}{2}\int {tg\left( t \right)} dt, we get
x3g(x2)dx=12[t×F(t)(F(t))dt] x3g(x2)dx=12[tF(t)(F(t))dt]\begin{array}{l} \Rightarrow \int {{x^3}g\left( {{x^2}} \right)} dx = \dfrac{1}{2}\left[ {t \times F\left( t \right) - \int {\left( {F\left( t \right)} \right)} dt} \right]\\\ \Rightarrow \int {{x^3}g\left( {{x^2}} \right)} dx = \dfrac{1}{2}\left[ {tF\left( t \right) - \int {\left( {F\left( t \right)} \right)} dt} \right]\end{array}
Finally, substituting t=x2t = {x^2}, we get
x3g(x2)dx=12[x2F(x2)(F(x2))d(x2)]\Rightarrow \int {{x^3}g\left( {{x^2}} \right)} dx = \dfrac{1}{2}\left[ {{x^2}F\left( {{x^2}} \right) - \int {\left( {F\left( {{x^2}} \right)} \right)} d\left( {{x^2}} \right)} \right]
Rewriting the equation, we get
x3g(x2)dx=12[x2F(x)2(F(x2))d(x2)]\Rightarrow \int {{x^3}g\left( {{x^2}} \right)} dx = \dfrac{1}{2}\left[ {{x^2}F{{\left( x \right)}^2} - \int {\left( {F\left( {{x^2}} \right)} \right)} d\left( {{x^2}} \right)} \right]
Therefore, we get the value of the integral x3g(x2)dx\int {{x^3}g\left( {{x^2}} \right)} dx as 12[x2F(x)2(F(x2))d(x2)]\dfrac{1}{2}\left[ {{x^2}F{{\left( x \right)}^2} - \int {\left( {F\left( {{x^2}} \right)} \right)} d\left( {{x^2}} \right)} \right].
Thus, the correct option is option (b).

Note: We differentiated x2{x^2} as 2x2x. This is because the derivative of a function of the form xn{x^n} is nxn1n{x^{n - 1}}. Thus, the derivative of the expression x2{x^2} is 2x1=2x2{x^1} = 2x.
We simplified 12tg(t)dt\int {\dfrac{1}{2}tg\left( t \right)} dt as 12tg(t)dt\dfrac{1}{2}\int {tg\left( t \right)} dt. This is because the integral of a function of the form af(x)af\left( x \right) can be written as af(x)dx=af(x)dx\int {af\left( x \right)} dx = a\int {f\left( x \right)} dx.