Solveeit Logo

Question

Question: Let $\int \frac{x^{1/2}}{\sqrt{1-x^3}}dx = \frac{2}{3}gof(x) + C$ (where $gof(x)$ is the composite f...

Let x1/21x3dx=23gof(x)+C\int \frac{x^{1/2}}{\sqrt{1-x^3}}dx = \frac{2}{3}gof(x) + C (where gof(x)gof(x) is the composite function defined by (gof)x=g(f(x))(gof)x = g(f(x)), CC is constant of integration and gof(0)=0gof(0) = 0, then which of the following is/are correct?

A

If f(x)=sin1xf(x) = \sin^{-1}x, then g(x)=x3/2g(x) = x^{3/2}

B

If f(x)=x3/2f(x) = x^{3/2}, then g(x)=sin1xg(x) = \sin^{-1}x

C

If f(x)=x2/3f(x) = x^{2/3}, then g(x)=sin1(x9/4)g(x) = \sin^{-1}(x^{9/4})

D

If f(x)=xf(x) = \sqrt{x}, then g(x)=sin1(x3)g(x) = \sin^{-1}(x^3)

Answer

B, C, D

Explanation

Solution

The integral x1/21x3dx\int \frac{x^{1/2}}{\sqrt{1-x^3}}dx is solved by substituting u=x3/2u = x^{3/2}. This substitution leads to du=32x1/2dxdu = \frac{3}{2}x^{1/2}dx, so x1/2dx=23dux^{1/2}dx = \frac{2}{3}du. The integral becomes 11u223du=2311u2du=23sin1(u)+C\int \frac{1}{\sqrt{1-u^2}} \frac{2}{3}du = \frac{2}{3}\int \frac{1}{\sqrt{1-u^2}}du = \frac{2}{3}\sin^{-1}(u) + C. Substituting back u=x3/2u=x^{3/2}, we get 23sin1(x3/2)+C\frac{2}{3}\sin^{-1}(x^{3/2}) + C. Comparing this with 23gof(x)+C\frac{2}{3}gof(x) + C, we require gof(x)=sin1(x3/2)gof(x) = \sin^{-1}(x^{3/2}). The condition gof(0)=0gof(0)=0 must also be satisfied. Let's check the options: A. f(x)=sin1xf(x) = \sin^{-1}x, g(x)=x3/2g(x) = x^{3/2}. gof(x)=g(f(x))=(sin1x)3/2gof(x) = g(f(x)) = (\sin^{-1}x)^{3/2}. This is not sin1(x3/2)\sin^{-1}(x^{3/2}). B. f(x)=x3/2f(x) = x^{3/2}, g(x)=sin1xg(x) = \sin^{-1}x. gof(x)=g(f(x))=sin1(x3/2)gof(x) = g(f(x)) = \sin^{-1}(x^{3/2}). gof(0)=sin1(03/2)=0gof(0) = \sin^{-1}(0^{3/2}) = 0. Correct. C. f(x)=x2/3f(x) = x^{2/3}, g(x)=sin1(x9/4)g(x) = \sin^{-1}(x^{9/4}). gof(x)=g(f(x))=sin1((x2/3)9/4)=sin1(x3/2)gof(x) = g(f(x)) = \sin^{-1}((x^{2/3})^{9/4}) = \sin^{-1}(x^{3/2}). gof(0)=sin1(03/2)=0gof(0) = \sin^{-1}(0^{3/2}) = 0. Correct. D. f(x)=x=x1/2f(x) = \sqrt{x} = x^{1/2}, g(x)=sin1(x3)g(x) = \sin^{-1}(x^3). gof(x)=g(f(x))=sin1((x1/2)3)=sin1(x3/2)gof(x) = g(f(x)) = \sin^{-1}((x^{1/2})^3) = \sin^{-1}(x^{3/2}). gof(0)=sin1(03/2)=0gof(0) = \sin^{-1}(0^{3/2}) = 0. Correct.