Solveeit Logo

Question

Mathematics Question on Integral Calculus

Let 2tanx3+tanxdx=12(αx+logeβsinx+γcosx)+C\int \frac{2 - \tan x}{3 + \tan x} \, dx = \frac{1}{2} \left( \alpha x + \log_e \lvert \beta \sin x + \gamma \cos x \rvert \right) + C, where CC is the constant of integration.

A

3

B

1

C

4

D

7

Answer

4

Explanation

Solution

2tanx3+tanxdx=2cosxsinx3cosx+sinxdx\int \frac{2 - \tan x}{3 + \tan x} \, dx = \int \frac{2 \cos x - \sin x}{3 \cos x + \sin x} \, dx

Let:

2cosxsinx=A(3cosx+sinx)+B(cosx3sinx)2 \cos x - \sin x = A(3 \cos x + \sin x) + B(\cos x - 3 \sin x)

Equating coefficients:

3A+B=2,A3B=13A + B = 2, \quad A - 3B = -1

Solving these equations:

A=12,B=12A = \frac{1}{2}, \quad B = \frac{1}{2}

Thus:

2cosxsinx3cosx+sinxdx=x2+12ln3cosx+sinx+C\int \frac{2 \cos x - \sin x}{3 \cos x + \sin x} \, dx = \frac{x}{2} + \frac{1}{2} \ln |3 \cos x + \sin x| + C

Simplify:

=12(x+ln3cosx+sinx)+C= \frac{1}{2} \left( x + \ln |3 \cos x + \sin x| \right) + C

Rewriting in the given form:

=12(αx+lnβsinx+γcosx)+C= \frac{1}{2} \left( \alpha x + \ln |\beta \sin x + \gamma \cos x| \right) + C

From the equation:

α=1,β=1,γ=3\alpha = 1, \quad \beta = 1, \quad \gamma = 3

Finally:

α+γβ=1+31=4\alpha + \frac{\gamma}{\beta} = 1 + \frac{3}{1} = 4

Ans: Option (3): 4.