Question
Mathematics Question on Integral Calculus
Let ∫3+tanx2−tanxdx=21(αx+loge∣βsinx+γcosx∣)+C, where C is the constant of integration.
A
3
B
1
C
4
D
7
Answer
4
Explanation
Solution
∫3+tanx2−tanxdx=∫3cosx+sinx2cosx−sinxdx
Let:
2cosx−sinx=A(3cosx+sinx)+B(cosx−3sinx)
Equating coefficients:
3A+B=2,A−3B=−1
Solving these equations:
A=21,B=21
Thus:
∫3cosx+sinx2cosx−sinxdx=2x+21ln∣3cosx+sinx∣+C
Simplify:
=21(x+ln∣3cosx+sinx∣)+C
Rewriting in the given form:
=21(αx+ln∣βsinx+γcosx∣)+C
From the equation:
α=1,β=1,γ=3
Finally:
α+βγ=1+13=4
Ans: Option (3): 4.