Solveeit Logo

Question

Question: Let in the given domain \(f:\left[ 0,\dfrac{\pi }{2} \right]\to R: \) we have a function \(f(x)=\sin...

Let in the given domain f:[0,π2]R:f:\left[ 0,\dfrac{\pi }{2} \right]\to R: we have a function f(x)=sinxf(x)=\sin x and in domain g:[0,π2]R:g:\left[ 0,\dfrac{\pi }{2} \right]\to R: we have g(x)=cosxg(x)=\cos x. Show that each one of f and g is one-one but (f+g)\left( f+g \right) is not one-one.

Explanation

Solution

Hint: To prove that the given function is one-one, assume two elements x1 and x2{{x}_{1}}\text{ and }{{x}_{2}} in the set of the domain of the given function and show that, if f(x1)=f(x2)f({{x}_{1}})=f({{x}_{2}}) then, x1=x2{{x}_{1}}={{x}_{2}}. If we are getting any other relation between x1{{x}_{1}} and x2{{x}_{2}} then the function is not one-one.

Complete step-by-step solution -
For the function f(x)=sinxf(x)=\sin x.
Let us consider any two elements x1 and x2{{x}_{1}}\text{ and }{{x}_{2}} in the domain of f(x)f(x). Now, substituting f(x1)=f(x2)f({{x}_{1}})=f({{x}_{2}}), we get,
sinx1=sinx2\sin {{x}_{1}}=\sin {{x}_{2}}, we know that in the domain [0,π2]\left[ 0,\dfrac{\pi }{2} \right] the value of sine ranges from 0 to 1, with a particular value for each angle. Therefore, for sinx1=sinx2\sin {{x}_{1}}=\sin {{x}_{2}}, we must have x1=x2{{x}_{1}}={{x}_{2}}.
Therefore, f(x)=sinxf(x)=\sin x is a one-one function.
For the function g(x)=cosxg(x)=\cos x.
Let us consider any two elements x1 and x2{{x}_{1}}\text{ and }{{x}_{2}} in the domain of g(x)g(x) . Now, substituting g(x1)=g(x2)g({{x}_{1}})=g({{x}_{2}}), we get,
cosx1=cosx2\cos {{x}_{1}}=\cos {{x}_{2}}, we know that in the domain [0,π2]\left[ 0,\dfrac{\pi }{2} \right] the value of cosine ranges from 1 to 0, with a particular value for each angle. Therefore, for cosx1=cosx2\cos {{x}_{1}}=\cos {{x}_{2}}, we must have x1=x2{{x}_{1}}={{x}_{2}}.
Therefore, g(x)=cosxg(x)=\cos x is a one-one function.
Considering the function (f+g)\left( f+g \right).
(f+g)=sinx+cosx(f+g)=\sin x+\cos x
Let us consider any two elements x1 and x2{{x}_{1}}\text{ and }{{x}_{2}} in the domain of (f+g)\left( f+g \right). Now, substituting (f+g)(x1)=(f+g)(x2)(f+g)({{x}_{1}})=(f+g)({{x}_{2}}), we get,
sinx1+cosx1=sinx2+cosx2 sinx1sinx2=cosx2cosx1 \begin{aligned} & \sin {{x}_{1}}+\cos {{x}_{1}}=\sin {{x}_{2}}+\cos {{x}_{2}} \\\ & \Rightarrow \sin {{x}_{1}}-\sin {{x}_{2}}=\cos {{x}_{2}}-\cos {{x}_{1}} \\\ \end{aligned}
Applying the formula: sinasinb=2sin(ab2)cos(a+b2)\sin a-\sin b=2\sin \left( \dfrac{a-b}{2} \right)\cos \left( \dfrac{a+b}{2} \right) andcosacosb=2sin(ba2)sin(a+b2)\cos a-\cos b=2\sin \left( \dfrac{b-a}{2} \right)\sin \left( \dfrac{a+b}{2} \right), we get,

& 2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=2\sin \left( \dfrac{{{x}_{1}}-{{x}_{1}}}{2} \right)\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \\\ & 2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=0 \\\ & 2\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\left( \cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \right)=0 \\\ & \Rightarrow \sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)\text{ or }\left( \cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \right)=0 \\\ \end{aligned}$$ Now, if $$\sin \left( \dfrac{{{x}_{1}}-{{x}_{2}}}{2} \right)=0$$, then $$\dfrac{{{x}_{1}}-{{x}_{2}}}{2}=0$$ because $\sin {{0}^{\circ }}=0$. Therefore, $$\begin{aligned} & {{x}_{1}}-{{x}_{2}}=0 \\\ & \Rightarrow {{x}_{1}}={{x}_{2}} \\\ \end{aligned}$$ Also, if $$\left( \cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)-\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right) \right)=0$$, then $$\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=\sin \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)$$ Dividing both sides by $$\cos \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)$$, we get, $1=\tan \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)$ We know that, $\tan \dfrac{\pi }{4}=1$. Therefore, $\begin{aligned} & \tan \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=\tan \dfrac{\pi }{4} \\\ & \Rightarrow \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)=\dfrac{\pi }{4} \\\ & \Rightarrow {{x}_{1}}+{{x}_{2}}=\dfrac{\pi }{2} \\\ & \Rightarrow {{x}_{1}}=\dfrac{\pi }{2}-{{x}_{2}} \\\ \end{aligned}$ Therefore, we can see that there is another relation between ${{x}_{1}}\text{ and }{{x}_{2}}$ other than ${{x}_{1}}={{x}_{2}}$, for the function $\left( f+g \right)$. Hence, $\left( f+g \right)$ is not one-one. Note: We can easily check that the functions f and g are one-one in the given domain by the help of graph. Also, we can easily say that at $0$ and $\dfrac{\pi }{2}$ the value of the function $\left( f+g \right)$ is 1. Therefore, the function $\left( f+g \right)$ cannot be one-one. But the above solution is the true way of solving the question.