Solveeit Logo

Question

Question: Let \(\mathbf { u } , \mathbf { v } , \mathbf { w }\) be such that \(| \mathbf { u } | = 1 , | \math...

Let u,v,w\mathbf { u } , \mathbf { v } , \mathbf { w } be such that u=1,v=2,w=3| \mathbf { u } | = 1 , | \mathbf { v } | = 2 , | \mathbf { w } | = 3. If the projection V\mathbf { V } along u\mathbf { u } is equal to that of W\mathbf { W } along u\mathbf { u } and V\mathbf { V }, W\mathbf { W } are perpendicular to each other then uv+w| \mathbf { u } - \mathbf { v } + \mathbf { w } | equals

A

14

B

7\sqrt { 7 }

C

14\sqrt { 14 }

D

2

Answer

14\sqrt { 14 }

Explanation

Solution

Without loss of generality, we can assume v=2i\mathbf { v } = 2 \mathbf { i } and w=3j\mathbf { w } = 3 \mathbf { j } Let u=xi+yj+zk\mathbf { u } = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } , u=1| \mathbf { u } | = 1x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 .....(i)

Projection of V\mathbf { V } along u\mathbf { u } = Projection of W\mathbf { W } along u\mathbf { u }

vu=wu\mathbf { v } \cdot \mathbf { u } = \mathbf { w } \cdot \mathbf { u }2i(xi+yj+2k)=3j(xi+yj+zk)2 \mathbf { i } \cdot ( x \mathbf { i } + y \mathbf { j } + 2 \mathbf { k } ) = 3 \mathbf { j } \cdot ( x \mathbf { i } + y \mathbf { j } + z \mathbf { k } )

2x=3y2 x = 3 y3y2x=03 y - 2 x = 0

Now, uvw=xi+yj+zk2i+3j| \mathbf { u } - \mathbf { v } - \mathbf { w } | = | x \mathbf { i } + y \mathbf { j } + z \mathbf { k } - 2 \mathbf { i } + 3 \mathbf { j } |

= (x2)i+(y+3)j+zk| ( x - 2 ) \mathbf { i } + ( y + 3 ) \mathbf { j } + z \mathbf { k } | = (x2)2+(y3)2+z2\sqrt { ( x - 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + z ^ { 2 } }

= (x2+y2+z2)+2(3y2x)+13=1+2×0+13=14\sqrt { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) + 2 ( 3 y - 2 x ) + 13 } = \sqrt { 1 + 2 \times 0 + 13 } = \sqrt { 14 }