Question
Question: Let \(\mathbf { u } , \mathbf { v } , \mathbf { w }\) be such that \(| \mathbf { u } | = 1 , | \math...
Let u,v,w be such that ∣u∣=1,∣v∣=2,∣w∣=3. If the projection V along u is equal to that of W along u and V, W are perpendicular to each other then ∣u−v+w∣ equals
A
14
B
7
C
14
D
2
Answer
14
Explanation
Solution
Without loss of generality, we can assume v=2i and w=3j Let u=xi+yj+zk , ∣u∣=1⇒ x2+y2+z2=1 .....(i)
Projection of V along u = Projection of W along u
⇒ v⋅u=w⋅u ⇒ 2i⋅(xi+yj+2k)=3j⋅(xi+yj+zk)
⇒ 2x=3y ⇒ 3y−2x=0
Now, ∣u−v−w∣=∣xi+yj+zk−2i+3j∣
= ∣(x−2)i+(y+3)j+zk∣ = (x−2)2+(y−3)2+z2
= (x2+y2+z2)+2(3y−2x)+13=1+2×0+13=14