Solveeit Logo

Question

Question: Let $I_1 = \int_{\pi/4}^{\pi/3} \frac{1}{1-\cos x} dx$ and $I_2 = \int_{\pi/4}^{\pi/3} \frac{1}{1-\s...

Let I1=π/4π/311cosxdxI_1 = \int_{\pi/4}^{\pi/3} \frac{1}{1-\cos x} dx and I2=π/4π/311sinxdxI_2 = \int_{\pi/4}^{\pi/3} \frac{1}{1-\sin x} dx. Then the value of I1+I2I_1 + I_2 is

Answer

2

Explanation

Solution

To find the value of I1+I2I_1 + I_2, we will evaluate each integral separately using trigonometric identities.

Step 1: Evaluate I1=π/4π/311cosxdxI_1 = \int_{\pi/4}^{\pi/3} \frac{1}{1-\cos x} dx

We use the identity 1cosx=2sin2(x/2)1 - \cos x = 2\sin^2(x/2). So, I1=π/4π/312sin2(x/2)dx=12π/4π/3csc2(x/2)dxI_1 = \int_{\pi/4}^{\pi/3} \frac{1}{2\sin^2(x/2)} dx = \frac{1}{2} \int_{\pi/4}^{\pi/3} \csc^2(x/2) dx.

Let u=x/2u = x/2. Then du=12dxdu = \frac{1}{2} dx. When x=π/4x = \pi/4, u=π/8u = \pi/8. When x=π/3x = \pi/3, u=π/6u = \pi/6.

Substituting these into the integral: I1=π/8π/6csc2uduI_1 = \int_{\pi/8}^{\pi/6} \csc^2 u \, du. The integral of csc2u\csc^2 u is cotu-\cot u. I1=[cotu]π/8π/6=cot(π/6)(cot(π/8))=3+cot(π/8)I_1 = [-\cot u]_{\pi/8}^{\pi/6} = -\cot(\pi/6) - (-\cot(\pi/8)) = -\sqrt{3} + \cot(\pi/8).

Alternatively, we can multiply the numerator and denominator by 1+cosx1+\cos x: I1=π/4π/31+cosx(1cosx)(1+cosx)dx=π/4π/31+cosx1cos2xdx=π/4π/31+cosxsin2xdxI_1 = \int_{\pi/4}^{\pi/3} \frac{1+\cos x}{(1-\cos x)(1+\cos x)} dx = \int_{\pi/4}^{\pi/3} \frac{1+\cos x}{1-\cos^2 x} dx = \int_{\pi/4}^{\pi/3} \frac{1+\cos x}{\sin^2 x} dx I1=π/4π/3(1sin2x+cosxsin2x)dx=π/4π/3(csc2x+cotxcscx)dxI_1 = \int_{\pi/4}^{\pi/3} \left(\frac{1}{\sin^2 x} + \frac{\cos x}{\sin^2 x}\right) dx = \int_{\pi/4}^{\pi/3} (\csc^2 x + \cot x \csc x) dx. The integral of csc2x\csc^2 x is cotx-\cot x, and the integral of cotxcscx\cot x \csc x is cscx-\csc x. I1=[cotxcscx]π/4π/3I_1 = [-\cot x - \csc x]_{\pi/4}^{\pi/3} I1=(cot(π/3)csc(π/3))(cot(π/4)csc(π/4))I_1 = (-\cot(\pi/3) - \csc(\pi/3)) - (-\cot(\pi/4) - \csc(\pi/4)) I1=(1323)(12)I_1 = \left(-\frac{1}{\sqrt{3}} - \frac{2}{\sqrt{3}}\right) - (-1 - \sqrt{2}) I1=33+1+2=3+1+2I_1 = -\frac{3}{\sqrt{3}} + 1 + \sqrt{2} = -\sqrt{3} + 1 + \sqrt{2}.

Step 2: Evaluate I2=π/4π/311sinxdxI_2 = \int_{\pi/4}^{\pi/3} \frac{1}{1-\sin x} dx

We can use the identity sinx=cos(π/2x)\sin x = \cos(\pi/2 - x). I2=π/4π/311cos(π/2x)dxI_2 = \int_{\pi/4}^{\pi/3} \frac{1}{1-\cos(\pi/2 - x)} dx. Let y=π/2xy = \pi/2 - x. Then dy=dxdy = -dx. When x=π/4x = \pi/4, y=π/2π/4=π/4y = \pi/2 - \pi/4 = \pi/4. When x=π/3x = \pi/3, y=π/2π/3=π/6y = \pi/2 - \pi/3 = \pi/6.

Substituting these into the integral: I2=π/4π/611cosy(dy)=π/6π/411cosydyI_2 = \int_{\pi/4}^{\pi/6} \frac{1}{1-\cos y} (-dy) = \int_{\pi/6}^{\pi/4} \frac{1}{1-\cos y} dy. This integral is of the same form as I1I_1. Using the half-angle formula 1cosy=2sin2(y/2)1-\cos y = 2\sin^2(y/2): I2=12π/6π/4csc2(y/2)dyI_2 = \frac{1}{2} \int_{\pi/6}^{\pi/4} \csc^2(y/2) dy. Let v=y/2v = y/2. Then dv=12dydv = \frac{1}{2} dy. When y=π/6y = \pi/6, v=π/12v = \pi/12. When y=π/4y = \pi/4, v=π/8v = \pi/8.

I2=π/12π/8csc2vdv=[cotv]π/12π/8=cot(π/8)(cot(π/12))=cot(π/8)+cot(π/12)I_2 = \int_{\pi/12}^{\pi/8} \csc^2 v \, dv = [-\cot v]_{\pi/12}^{\pi/8} = -\cot(\pi/8) - (-\cot(\pi/12)) = -\cot(\pi/8) + \cot(\pi/12).

Alternatively, multiply numerator and denominator by 1+sinx1+\sin x: I2=π/4π/31+sinx(1sinx)(1+sinx)dx=π/4π/31+sinx1sin2xdx=π/4π/31+sinxcos2xdxI_2 = \int_{\pi/4}^{\pi/3} \frac{1+\sin x}{(1-\sin x)(1+\sin x)} dx = \int_{\pi/4}^{\pi/3} \frac{1+\sin x}{1-\sin^2 x} dx = \int_{\pi/4}^{\pi/3} \frac{1+\sin x}{\cos^2 x} dx I2=π/4π/3(1cos2x+sinxcos2x)dx=π/4π/3(sec2x+tanxsecx)dxI_2 = \int_{\pi/4}^{\pi/3} \left(\frac{1}{\cos^2 x} + \frac{\sin x}{\cos^2 x}\right) dx = \int_{\pi/4}^{\pi/3} (\sec^2 x + \tan x \sec x) dx. The integral of sec2x\sec^2 x is tanx\tan x, and the integral of tanxsecx\tan x \sec x is secx\sec x. I2=[tanx+secx]π/4π/3I_2 = [\tan x + \sec x]_{\pi/4}^{\pi/3} I2=(tan(π/3)+sec(π/3))(tan(π/4)+sec(π/4))I_2 = (\tan(\pi/3) + \sec(\pi/3)) - (\tan(\pi/4) + \sec(\pi/4)) I2=(3+2)(1+2)I_2 = (\sqrt{3} + 2) - (1 + \sqrt{2}) I2=3+12I_2 = \sqrt{3} + 1 - \sqrt{2}.

Step 3: Calculate I1+I2I_1 + I_2

Using the direct integration results from the alternative method: I1+I2=(3+1+2)+(3+12)I_1 + I_2 = (-\sqrt{3} + 1 + \sqrt{2}) + (\sqrt{3} + 1 - \sqrt{2}) I1+I2=3+1+2+3+12I_1 + I_2 = -\sqrt{3} + 1 + \sqrt{2} + \sqrt{3} + 1 - \sqrt{2} I1+I2=(1+1)+(3+3)+(22)I_1 + I_2 = (1+1) + (-\sqrt{3}+\sqrt{3}) + (\sqrt{2}-\sqrt{2}) I1+I2=2I_1 + I_2 = 2.

Using the results from the first method involving cot(π/8)\cot(\pi/8) and cot(π/12)\cot(\pi/12): I1+I2=(3+cot(π/8))+(cot(π/8)+cot(π/12))I_1 + I_2 = (-\sqrt{3} + \cot(\pi/8)) + (-\cot(\pi/8) + \cot(\pi/12)) I1+I2=3+cot(π/12)I_1 + I_2 = -\sqrt{3} + \cot(\pi/12). To find cot(π/12)\cot(\pi/12), we use π/12=15\pi/12 = 15^\circ. cot(15)=cot(4530)=cot45cot30+1cot30cot45=13+131\cot(15^\circ) = \cot(45^\circ - 30^\circ) = \frac{\cot 45^\circ \cot 30^\circ + 1}{\cot 30^\circ - \cot 45^\circ} = \frac{1 \cdot \sqrt{3} + 1}{\sqrt{3} - 1}. Rationalizing the expression: cot(15)=(3+1)(3+1)(31)(3+1)=(3+1)231=3+1+232=4+232=2+3\cot(15^\circ) = \frac{(\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{(\sqrt{3}+1)^2}{3-1} = \frac{3+1+2\sqrt{3}}{2} = \frac{4+2\sqrt{3}}{2} = 2+\sqrt{3}. Substitute this value back into I1+I2I_1 + I_2: I1+I2=3+(2+3)=2I_1 + I_2 = -\sqrt{3} + (2+\sqrt{3}) = 2.

Both methods yield the same result.

The final answer is 2\boxed{2}.

Explanation of the solution: The integrals I1I_1 and I2I_2 are evaluated separately. For I1=11cosxdxI_1 = \int \frac{1}{1-\cos x} dx, multiply numerator and denominator by 1+cosx1+\cos x to get 1+cosxsin2xdx=(csc2x+cotxcscx)dx\int \frac{1+\cos x}{\sin^2 x} dx = \int (\csc^2 x + \cot x \csc x) dx. This integrates to [cotxcscx][-\cot x - \csc x]. For I2=11sinxdxI_2 = \int \frac{1}{1-\sin x} dx, multiply numerator and denominator by 1+sinx1+\sin x to get 1+sinxcos2xdx=(sec2x+tanxsecx)dx\int \frac{1+\sin x}{\cos^2 x} dx = \int (\sec^2 x + \tan x \sec x) dx. This integrates to [tanx+secx][\tan x + \sec x]. Evaluate these definite integrals from π/4\pi/4 to π/3\pi/3. I1=(cot(π/3)csc(π/3))(cot(π/4)csc(π/4))=(1323)(12)=3+1+2I_1 = (-\cot(\pi/3) - \csc(\pi/3)) - (-\cot(\pi/4) - \csc(\pi/4)) = (-\frac{1}{\sqrt{3}} - \frac{2}{\sqrt{3}}) - (-1 - \sqrt{2}) = -\sqrt{3} + 1 + \sqrt{2}. I2=(tan(π/3)+sec(π/3))(tan(π/4)+sec(π/4))=(3+2)(1+2)=3+12I_2 = (\tan(\pi/3) + \sec(\pi/3)) - (\tan(\pi/4) + \sec(\pi/4)) = (\sqrt{3} + 2) - (1 + \sqrt{2}) = \sqrt{3} + 1 - \sqrt{2}. Finally, I1+I2=(3+1+2)+(3+12)=2I_1 + I_2 = (-\sqrt{3} + 1 + \sqrt{2}) + (\sqrt{3} + 1 - \sqrt{2}) = 2.