Question
Question: Let $I_1 = \int_{\pi/4}^{\pi/3} \frac{1}{1-\cos x} dx$ and $I_2 = \int_{\pi/4}^{\pi/3} \frac{1}{1-\s...
Let I1=∫π/4π/31−cosx1dx and I2=∫π/4π/31−sinx1dx. Then the value of I1+I2 is

2
Solution
To find the value of I1+I2, we will evaluate each integral separately using trigonometric identities.
Step 1: Evaluate I1=∫π/4π/31−cosx1dx
We use the identity 1−cosx=2sin2(x/2). So, I1=∫π/4π/32sin2(x/2)1dx=21∫π/4π/3csc2(x/2)dx.
Let u=x/2. Then du=21dx. When x=π/4, u=π/8. When x=π/3, u=π/6.
Substituting these into the integral: I1=∫π/8π/6csc2udu. The integral of csc2u is −cotu. I1=[−cotu]π/8π/6=−cot(π/6)−(−cot(π/8))=−3+cot(π/8).
Alternatively, we can multiply the numerator and denominator by 1+cosx: I1=∫π/4π/3(1−cosx)(1+cosx)1+cosxdx=∫π/4π/31−cos2x1+cosxdx=∫π/4π/3sin2x1+cosxdx I1=∫π/4π/3(sin2x1+sin2xcosx)dx=∫π/4π/3(csc2x+cotxcscx)dx. The integral of csc2x is −cotx, and the integral of cotxcscx is −cscx. I1=[−cotx−cscx]π/4π/3 I1=(−cot(π/3)−csc(π/3))−(−cot(π/4)−csc(π/4)) I1=(−31−32)−(−1−2) I1=−33+1+2=−3+1+2.
Step 2: Evaluate I2=∫π/4π/31−sinx1dx
We can use the identity sinx=cos(π/2−x). I2=∫π/4π/31−cos(π/2−x)1dx. Let y=π/2−x. Then dy=−dx. When x=π/4, y=π/2−π/4=π/4. When x=π/3, y=π/2−π/3=π/6.
Substituting these into the integral: I2=∫π/4π/61−cosy1(−dy)=∫π/6π/41−cosy1dy. This integral is of the same form as I1. Using the half-angle formula 1−cosy=2sin2(y/2): I2=21∫π/6π/4csc2(y/2)dy. Let v=y/2. Then dv=21dy. When y=π/6, v=π/12. When y=π/4, v=π/8.
I2=∫π/12π/8csc2vdv=[−cotv]π/12π/8=−cot(π/8)−(−cot(π/12))=−cot(π/8)+cot(π/12).
Alternatively, multiply numerator and denominator by 1+sinx: I2=∫π/4π/3(1−sinx)(1+sinx)1+sinxdx=∫π/4π/31−sin2x1+sinxdx=∫π/4π/3cos2x1+sinxdx I2=∫π/4π/3(cos2x1+cos2xsinx)dx=∫π/4π/3(sec2x+tanxsecx)dx. The integral of sec2x is tanx, and the integral of tanxsecx is secx. I2=[tanx+secx]π/4π/3 I2=(tan(π/3)+sec(π/3))−(tan(π/4)+sec(π/4)) I2=(3+2)−(1+2) I2=3+1−2.
Step 3: Calculate I1+I2
Using the direct integration results from the alternative method: I1+I2=(−3+1+2)+(3+1−2) I1+I2=−3+1+2+3+1−2 I1+I2=(1+1)+(−3+3)+(2−2) I1+I2=2.
Using the results from the first method involving cot(π/8) and cot(π/12): I1+I2=(−3+cot(π/8))+(−cot(π/8)+cot(π/12)) I1+I2=−3+cot(π/12). To find cot(π/12), we use π/12=15∘. cot(15∘)=cot(45∘−30∘)=cot30∘−cot45∘cot45∘cot30∘+1=3−11⋅3+1. Rationalizing the expression: cot(15∘)=(3−1)(3+1)(3+1)(3+1)=3−1(3+1)2=23+1+23=24+23=2+3. Substitute this value back into I1+I2: I1+I2=−3+(2+3)=2.
Both methods yield the same result.
The final answer is 2.
Explanation of the solution: The integrals I1 and I2 are evaluated separately. For I1=∫1−cosx1dx, multiply numerator and denominator by 1+cosx to get ∫sin2x1+cosxdx=∫(csc2x+cotxcscx)dx. This integrates to [−cotx−cscx]. For I2=∫1−sinx1dx, multiply numerator and denominator by 1+sinx to get ∫cos2x1+sinxdx=∫(sec2x+tanxsecx)dx. This integrates to [tanx+secx]. Evaluate these definite integrals from π/4 to π/3. I1=(−cot(π/3)−csc(π/3))−(−cot(π/4)−csc(π/4))=(−31−32)−(−1−2)=−3+1+2. I2=(tan(π/3)+sec(π/3))−(tan(π/4)+sec(π/4))=(3+2)−(1+2)=3+1−2. Finally, I1+I2=(−3+1+2)+(3+1−2)=2.