Solveeit Logo

Question

Question: Let I = \(\int_{}^{}\frac{e^{x}}{e^{4x} + e^{2x} + 1}\) dx, J = \(\int_{}^{}\frac{e^{–x}}{e^{–4x} + ...

Let I = exe4x+e2x+1\int_{}^{}\frac{e^{x}}{e^{4x} + e^{2x} + 1} dx, J = exe4x+e2x+1\int_{}^{}\frac{e^{–x}}{e^{–4x} + e^{–2x} + 1} dx. Then, for an arbitrary constant C, the value of J – I equals –

A

12\frac{1}{2}log(e4xe2x+1e4x+e2x+1)\left( \frac{e^{4x}–e^{2x} + 1}{e^{4x} + e^{2x} + 1} \right) + C

B

12\frac{1}{2}log(e2x+ex+1e2xe2x+1)\left( \frac{e^{2x} + e^{x} + 1}{e^{2x}–e^{2x} + 1} \right) + C

C

12\frac{1}{2}log(e2xex+1e2x+ex+1)\left( \frac{e^{2x}–e^{x} + 1}{e^{2x} + e^{x} + 1} \right) + C

D

12\frac{1}{2}log(e4x+e2x+1e4xe2x+1)\left( \frac{e^{4x} + e^{2x} + 1}{e^{4x}–e^{2x} + 1} \right) + C

Answer

12\frac{1}{2}log(e2xex+1e2x+ex+1)\left( \frac{e^{2x}–e^{x} + 1}{e^{2x} + e^{x} + 1} \right) + C

Explanation

Solution

J – I = e3xex1+e2x+e4x\int_{}^{}\frac{e^{3x}–e^{x}}{1 + e^{2x} + e^{4x}}

Let ex = t

̃ exdx = dt

J-I = t211+t2+t4\int_{}^{}\frac{t^{2}–1}{1 + t^{2} + t^{4}}dt = t2(11t2)t2(t2+1+1t2)dt\int_{}^{}{\frac{t^{2}\left( 1–\frac{1}{t^{2}} \right)}{t^{2}\left( t^{2} + 1 + \frac{1}{t^{2}} \right)}dt}

= dt

t + = u ̃ (11t2)\left( 1–\frac{1}{t^{2}} \right)dt = du

=

= 12\frac{1}{2}log u1u+1\left| \frac{u–1}{u + 1} \right| + c

= 12\frac{1}{2} log ex+1ex1ex+1ex+1\left| \frac{e^{x} + \frac{1}{e^{x}}–1}{e^{x} + \frac{1}{e^{x}} + 1} \right| + c