Question
Question: Let I = \(\int_{}^{}\frac{e^{x}}{e^{4x} + e^{2x} + 1}\) dx, J = \(\int_{}^{}\frac{e^{–x}}{e^{–4x} + ...
Let I = ∫e4x+e2x+1ex dx, J = ∫e–4x+e–2x+1e–x dx. Then, for an arbitrary constant C, the value of J – I equals –
A
21log(e4x+e2x+1e4x–e2x+1) + C
B
21log(e2x–e2x+1e2x+ex+1) + C
C
21log(e2x+ex+1e2x–ex+1) + C
D
21log(e4x–e2x+1e4x+e2x+1) + C
Answer
21log(e2x+ex+1e2x–ex+1) + C
Explanation
Solution
J – I = ∫1+e2x+e4xe3x–ex
Let ex = t
̃ exdx = dt
J-I = ∫1+t2+t4t2–1dt = ∫t2(t2+1+t21)t2(1–t21)dt
= dt
t + = u ̃ (1–t21)dt = du
=
= 21log u+1u–1 + c
= 21 log ex+ex1+1ex+ex1–1 + c