Solveeit Logo

Question

Question: Let \(I=\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}}{\dfrac{\sin x}{x}dx}\), then [a] \(\dfrac{1}{2}\...

Let I=π4π3sinxxdxI=\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}}{\dfrac{\sin x}{x}dx}, then
[a] 12I1\dfrac{1}{2}\le I\le 1
[b] 4I2304\le I\le 2\sqrt{30}
[c] 38I26\dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6}
[d] 1I2321\le I\le \dfrac{2\sqrt{3}}{\sqrt{2}}

Explanation

Solution

Hint: Use the fact that sinxx\dfrac{\sin x}{x} is decreasing function in the interval (π4,π3)\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right).
Use the fact that if f(x) is a decreasing function in (a,b), then f(b)(ba)abf(x)dxf(a)(ba)f\left( b \right)\left( b-a \right)\le \int_{a}^{b}{f\left( x \right)dx\le f\left( a \right)\left( b-a \right)}.
Hence find the corresponding range of π4π3sinxxdx\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}}{\dfrac{\sin x}{x}dx}.

Complete step-by-step answer:

The green curve is of sinxx\dfrac{\sin x}{x}, A(π4,0)A\equiv \left( \dfrac{\pi }{4},0 \right) and E(π3,0)E\equiv \left( \dfrac{\pi }{3},0 \right).
As is evident from the graph, the area of rectangle BIEA is more than the value of the integral, and the area of the rectangle HFEA is less than the value of the integral.
Now we have
Area of rectangle BIEA =AE×AB=sin(π4)π4(π3π4)=AE\times AB=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\dfrac{\pi }{4}}\left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)
Now, we know that sin(π4)=12\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}
Using, we get
Area of rectangle BIEA =12π×4×(4π3π12)=132=\dfrac{\dfrac{1}{\sqrt{2}}}{\pi }\times 4\times \left( \dfrac{4\pi -3\pi }{12} \right)=\dfrac{1}{3\sqrt{2}}
Multiplying the numerator and denominator by 2\sqrt{2}, we get
Area of rectangle BIEA =26=\dfrac{\sqrt{2}}{6}.
Also, the area of rectangle HFEA =AH×AE=sin(π3)π3×(π3π4)=AH\times AE=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\dfrac{\pi }{3}}\times \left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)
We know that sin(π3)=32\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}
Using, we get
Area of rectangle HFEA =32π×3×π12=38=\dfrac{\dfrac{\sqrt{3}}{2}}{\pi }\times 3\times \dfrac{\pi }{12}=\dfrac{\sqrt{3}}{8}
Now we know that the area of rectangle BIEA is more than the value of the integral and the area of the rectangle HFEA is less than the value of the integral.
Hence we have
38I26\dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6}
Hence option [c] is correct

Note: If M is the maxima of f(x) and m is the minima of f(x) in the interval (a,b), the we have m(ba)abf(x)dxM(ba)m\left( b-a \right)\le \int_{a}^{b}{f\left( x \right)dx}\le M\left( b-a \right)
Now let f(x) =sinxx=\dfrac{\sin x}{x}, we have
f(x)=xcosxsinxx2 f(x)=cosxxtanxx2 \begin{aligned} & f'\left( x \right)=\dfrac{x\cos x-\sin x}{{{x}^{2}}} \\\ & \Rightarrow f'\left( x \right)=\cos x\dfrac{x-\tan x}{{{x}^{2}}} \\\ \end{aligned}
Now, we know that tanxx,x(0,π2)\tan x\ge x,x\in \left( 0,\dfrac{\pi }{2} \right) and in the interval (π4,π3),x>0,cosx<1\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right),x>0,\cos x<1. Hence, we have
cosxxtanxx20\cos x\dfrac{x-\tan x}{{{x}^{2}}}\le 0
Hence we have
f(x)0f'\left( x \right)\le 0
Hence f(x) is a decreasing function in the interval (π4,π3)\left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right).
Hence we have
x1,x2(π4,π3)\forall {{x}_{1}},{{x}_{2}}\in \left( \dfrac{\pi }{4},\dfrac{\pi }{3} \right) if x1<x2{{x}_{1}}<{{x}_{2}}, then f(x1)f(x2)f\left( {{x}_{1}} \right)\ge f\left( {{x}_{2}} \right).
Hence we have m=sin(π3)π3=332πm=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\dfrac{\pi }{3}}=\dfrac{3\sqrt{3}}{2\pi } and M=sin(π4)π4=422πM=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\dfrac{\pi }{4}}=\dfrac{4\sqrt{2}}{2\pi }
Hence we have
332π(π12)I422π(π12) 38I26 \begin{aligned} & \dfrac{3\sqrt{3}}{2\pi }\left( \dfrac{\pi }{12} \right)\le I\le \dfrac{4\sqrt{2}}{2\pi }\left( \dfrac{\pi }{12} \right) \\\ & \Rightarrow \dfrac{\sqrt{3}}{8}\le I\le \dfrac{\sqrt{2}}{6} \\\ \end{aligned}
Hence option [c] is correct.
[2] Inequality tanxx,x(0,π2)\tan x\ge x,x\in \left( 0,\dfrac{\pi }{2} \right) follows from LMVT
Apply LMVT in [0.x]\left[ 0.x \right] where x(0,π2)x\in \left( 0,\dfrac{\pi }{2} \right), we have tanxx0=sec2c,c(0,x)\dfrac{\tan x}{x-0}={{\sec }^{2}}c,c\in \left( 0,x \right).
Now, we know sec2x1{{\sec }^{2}}x\ge 1
Hence, we have
tanxx\tan x\ge x