Solveeit Logo

Question

Mathematics Question on Integration by Partial Fractions

Let
I=π4π3(8sinxsin2xx)dxI = ∫^{\frac{π}{3}}_{\frac{π}{4}}(\frac{8sinx-sin2x}{x})dx
Then

A

π2<I<3π4\frac{π}{2}<I<\frac{3π}{4}

B

π5<I<5π12\frac{π}{5}<I<\frac{5π}{12}

C

5π12<I<33π\frac{5π}{12}<I<\frac{\sqrt3}{3}π

D

3π4<I<π\frac{3π}{4}<I<π

Answer

π2<I<3π4\frac{π}{2}<I<\frac{3π}{4}

Explanation

Solution

I comes out around 1.536 which is not satisfied by any given options.
I=π4π3(8sinxsin2xx)dx>I>I=π4π3(8sinxsin2xx)dxI = ∫^{\frac{π}{3}}_{\frac{π}{4}}(\frac{8sinx-sin2x}{x})dx>I>I = ∫^{\frac{π}{3}}_{\frac{π}{4}}(\frac{8sinx-sin2x}{x})dx
π2>I>π4π3(8sinxsin2xx)dx\frac{π}{2}>I> ∫^{\frac{π}{3}}_{\frac{π}{4}}(\frac{8sinx-sin2x}{x})dx
sinxx\frac{sinx}{x} is decreasing in (π3,π4)(\frac{π}{3},\frac{π}{4})
so it attains maximum at
x = x/4
I>π4π3(8sinπ/3π/32)dxI> ∫^{\frac{π}{3}}_{\frac{π}{4}}(\frac{8 sin\pi/3}{\pi/3}-2)dx
I>3π6I>√3-\frac{π}{6}