Solveeit Logo

Question

Mathematics Question on Matrices

Let i^,j^\hat{i}, \hat{j} and k^\hat{k} be the unit vectors along the three positive coordinate axes Let a=3i^+j^k^,\overrightarrow{ a }=3 \hat{ i }+\hat{ j }-\hat{ k }, b=i^+b2j^+b3k^,b2,b3R,\overrightarrow{ b }=\hat{ i }+ b _2 \hat{ j }+ b _3 \hat{ k }, b _2, b _3 \in R , c=c1i^+c2j^+c3k^,c1,c2,c3R \overrightarrow{ c }= c _1 \hat{ i }+ c _2 \hat{ j }+ c _3 \hat{ k }, c _1, c _2, c _3 \in R be three vectors such that b2b3>0,ab=0b_2 b_3>0, \vec{a} \cdot \vec{b}=0 and \begin{pmatrix}0 & -c_3 & c_2 \\\c_3 & 0 & -c_1 \\\\-c_2 & c_1 & 0\end{pmatrix}\begin{pmatrix} 1 \\\b_2 \\\b_3\end{pmatrix}=\begin{pmatrix}3-c_1 \\\1-c_2 \\\\-1-c_3\end{pmatrix} . Then, which of the following is/are TRUE?

A

a.c=0\vec{a}.\vec{c}=0

B

b.c=0\vec{b}.\vec{c}=0

C

b>10\left | \vec{b} \right |> \sqrt10

D

c10\left | \vec{c} \right |\leq \sqrt10

Answer

b.c=0\vec{b}.\vec{c}=0

Explanation

Solution

The correct answer is option
(B) b.c=0\vec{b}.\vec{c}=0
(C) b>10\left | \vec{b} \right |> \sqrt10
(D): c10\left | \vec{c} \right |\leq \sqrt10