Question
Mathematics Question on Matrices
Let i^,j^ and k^ be the unit vectors along the three positive coordinate axes Let a=3i^+j^−k^, b=i^+b2j^+b3k^,b2,b3∈R, c=c1i^+c2j^+c3k^,c1,c2,c3∈R be three vectors such that b2b3>0,a⋅b=0 and \begin{pmatrix}0 & -c_3 & c_2 \\\c_3 & 0 & -c_1 \\\\-c_2 & c_1 & 0\end{pmatrix}\begin{pmatrix} 1 \\\b_2 \\\b_3\end{pmatrix}=\begin{pmatrix}3-c_1 \\\1-c_2 \\\\-1-c_3\end{pmatrix} . Then, which of the following is/are TRUE?
A
a.c=0
B
b.c=0
C
b>10
D
∣c∣≤10
Answer
b.c=0
Explanation
Solution
The correct answer is option
(B) b.c=0
(C) b>10
(D): ∣c∣≤10