Solveeit Logo

Question

Mathematics Question on types of vectors

Let a^\hat a and b^\hat b be two unit vectors such that the angle between them is π4\frac{\pi}{4}. If θ is the angle between the vectors (a^\hat a+b^\hat b) and (a^\hat a+2b^\hat b+2(a^\hat a×b^\hat b)), then the value of 164 cos2θ is equal to :

A

90+272\sqrt2

B

45+182\sqrt2

C

90+32\sqrt2

D

54+902\sqrt2

Answer

90+272\sqrt2

Explanation

Solution

a^\hat ab^\hat b=12\frac{1}{2} and =|a\vec a×b\vec b|=12\frac{1}{\sqrt2}
(a^+b^)(a^+2b^+2(a^×b^)a^+b^a^+2b^+2(a^×b^)\frac{(\hat a+\hat b)⋅(\hat a+2\hat b+2(\hat a×\hat b)}{|\hat a+\hat b||\hat a+2\hat b+2(\hat a×\hat b)|}=cos⁡θ
|a^\hat a+b^\hat b|2=2+2\sqrt2
|a^\hat a+2b^\hat b+2(a^\hat a×b^\hat b)|2=1+4+4|a^\hat a×b^\hat b|2+4\hat a$$\hat b
=5+4⋅12\frac{1}{2}+42\frac{4}{\sqrt2}=7+222\sqrt2
Hence, cos2θ⁡=(3+32)2(2+2)(7+22)\frac{(3+\frac{3}{\sqrt2})^2}{(2+√2)(7+2√2)}=92(52+3)164\frac{9\sqrt2(5\sqrt2+3)}{164}
⇒164cos2⁡θ=90+272\sqrt2
So, the correct option is (A): 90+272\sqrt2