Solveeit Logo

Question

Multivariable Calculus Question on Integral Calculus

Let H: RR\R\rightarrow\R be the function given by H(x) = 12(ex+ex)\frac{1}{2}(e^x+e^{-x}) for xRx\isin\R.
Let f: RR\R\rightarrow\R be defined by
f(x)=0πH(xsinθ)dθf(x)=\displaystyle\int_{0}^{\pi}H(xsin\theta)d\theta for xRx\isin\R
Then which one of the following is true?

A

xf"(x) + f'(x) +xf(x) = 0 for all xRx\isin\R.

B

xf"(x) + f'(x) +xf(x) = 0 for all xRx\isin\R.

C

xf"(x) + f'(x) +xf(x) = 0 for all xRx\isin\R.

D

xf"(x) + f'(x) +xf(x) = 0 for all xRx\isin\R.

Answer

xf"(x) + f'(x) +xf(x) = 0 for all xRx\isin\R.

Explanation

Solution

The correct option is (C): xf"(x) + f'(x) +xf(x) = 0 for all xRx\isin\R.