Question
Mathematics Question on Hyperbola
Let H: a2−x2+b2y2=1 be the hyperbola, whose eccentricity is 3 and the length of the latus rectum is 43. Suppose the point (α,6), α>0 lies on H. If β is the product of the focal distances of the point (α,6), then α2+β is equal to:
170
171
169
172
171
Solution
This gives:
a2=2b2.
The length of the latus rectum is given by:
Latus Rectum=b2a2.
Substitute a2=2b2 and Latus Rectum = 43:
b4b2=43⟹4b=43⟹b=3.
Using a2=2b2:
a2=2(3)2=2⋅3=6⟹a=6.
The equation of the hyperbola becomes:
3y2−6x2=1.
The point (α,6) lies on the hyperbola:
362−6α2=1⟹12−6α2=1⟹6α2=11⟹α2=66.
The coordinates of the foci are:
(0,±be)=(0,±3⋅3)=(0,±3).
Let d1 and d2 be the focal distances of the point (α,6):
d1=α2+(6−3)2,d2=α2+(6+3)2.
Substitute:
d1=66+(6−3)2=66+9=75, d2=66+(6+3)2=66+81=147.
The product of the focal distances is:
β=d1⋅d2=75⋅147=75⋅147.
Simplify:
75⋅147=11025⟹β=11025=105.
Finally, calculate a2+β:
a2+β=66+105=171.
Final Answer: 171.