Solveeit Logo

Question

Mathematics Question on Hyperbola

Let H: x2a2+y2b2=1\frac{-x^2}{a^2} + \frac{y^2}{b^2} = 1 be the hyperbola, whose eccentricity is 3\sqrt{3} and the length of the latus rectum is 434\sqrt{3}. Suppose the point (α,6)(\alpha, 6), α>0\alpha>0 lies on H. If β\beta is the product of the focal distances of the point (α,6)(\alpha, 6), then α2+β\alpha^2 + \beta is equal to:

A

170

B

171

C

169

D

172

Answer

171

Explanation

Solution

This gives:
a2=2b2.a^2 = 2b^2.
The length of the latus rectum is given by:
Latus Rectum=2a2b.\text{Latus Rectum} = \frac{2a^2}{b}.
Substitute a2=2b2a^2 = 2b^2 and Latus Rectum = 434\sqrt{3}:
4b2b=43    4b=43    b=3.\frac{4b^2}{b} = 4\sqrt{3} \implies 4b = 4\sqrt{3} \implies b = \sqrt{3}.
Using a2=2b2a^2 = 2b^2:
a2=2(3)2=23=6    a=6.a^2 = 2(\sqrt{3})^2 = 2 \cdot 3 = 6 \implies a = \sqrt{6}.
The equation of the hyperbola becomes:
y23x26=1.\frac{y^2}{3} - \frac{x^2}{6} = 1.
The point (α,6)(\alpha, 6) lies on the hyperbola:
623α26=1    12α26=1    α26=11    α2=66.\frac{6^2}{3} - \frac{\alpha^2}{6} = 1 \implies 12 - \frac{\alpha^2}{6} = 1 \implies \frac{\alpha^2}{6} = 11 \implies \alpha^2 = 66.
The coordinates of the foci are:
(0,±be)=(0,±33)=(0,±3).(0, \pm be) = (0, \pm \sqrt{3} \cdot \sqrt{3}) = (0, \pm 3).
Let d1d_1 and d2d_2 be the focal distances of the point (α,6)(\alpha, 6):
d1=α2+(63)2,d2=α2+(6+3)2.d_1 = \sqrt{\alpha^2 + (6 - 3)^2}, \quad d_2 = \sqrt{\alpha^2 + (6 + 3)^2}.
Substitute:
d1=66+(63)2=66+9=75,d_1 = \sqrt{66 + (6 - 3)^2} = \sqrt{66 + 9} = \sqrt{75}, d2=66+(6+3)2=66+81=147.d_2 = \sqrt{66 + (6 + 3)^2} = \sqrt{66 + 81} = \sqrt{147}.
The product of the focal distances is:
β=d1d2=75147=75147.\beta = d_1 \cdot d_2 = \sqrt{75} \cdot \sqrt{147} = \sqrt{75 \cdot 147}.
Simplify:
75147=11025    β=11025=105.75 \cdot 147 = 11025 \implies \beta = \sqrt{11025} = 105.
Finally, calculate a2+βa^2 + \beta:
a2+β=66+105=171.a^2 + \beta = 66 + 105 = 171.
Final Answer: 171.