Solveeit Logo

Question

Mathematics Question on Hyperbola

Let H: x2a2y2b2=1,a>0,b>0,\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is 4(22+14).4(2\sqrt 2 + \sqrt {14}). If the eccentricity H is 112\frac{\sqrt {11}}{2}, then the value of a2+b2a^2 + b^2 is equal to ______.

Answer

2a+2b=4(22+14)  ...(1)2a+2b=4(2\sqrt2+\sqrt14)\ \ ...(1)

1+b2a2=114  ....(2)1+\frac{b^2}{a^2}=\frac{11}{4}\ \ ....(2)

b2a2=74  ...(3)⇒\frac{b^2}{a^2}=\frac{7}{4}\ \ ...(3)

a+b=42+2  ....(4)a+b=4\sqrt2+2\sqrt\ \ ....(4)

By (3)(3) and (4)(4)

a+72a=42+214a+\frac {\sqrt 7}{2}a = 4\sqrt 2+2\sqrt {14}

a(a+7)2=22(2+7)\frac {a(a+\sqrt 7)}{2}= 2\sqrt 2(2+\sqrt 7)

a=42a=4\sqrt2

⇒$$a^2 = 32 and b2=56b^2 = 56

a2+b2=32+56⇒ a^2 + b^2 = 32 + 56

a2+b2=88⇒ a^2 + b^2= 88

So, the answer is 8888.