Solveeit Logo

Question

Question: Let \(H \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\) ,where \([a\text{ }>\text{ }b\...

Let Hx2a2y2b2=1H \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 ,where [a > b > 0[a\text{ }>\text{ }b\text{ }>\text{ }0, be a hyperbola in the xy\text{xy} plane whose conjugate axis LM\text{LM} subtends an angle of 60{{60}^{\circ }}at one of its vertices N\text{N}. Let the area of the triangle LMNLMN be 4√3.

List-I & List-II \\\ \text{P}.\text{ The length of the conjugate axis of}~\text{H} & \text{ 1}.~\text{8 } \\\ \text{Q}.\text{ The eccentricity of}~\text{H}~\text{is } & 2.\dfrac{4}{\sqrt{3}} \\\ \text{R}.\text{ The distance between the foci of}~\text{H}~\text{is} & 3.\dfrac{2}{\sqrt{3}} \\\ \text{S}.\text{ The length of the latus rectum of}~\text{H}~\text{is} & \text{1}.~\text{4} \\\ \end{matrix}$$ The correct option is A.$P\to 4,Q\to 2,R\to 1,S\to 3$ $$$$ B.$P\to 4,Q\to 3,R\to 1,S\to 2$$$$$ C.$P\to 4,Q\to 1,R\to 3,S\to 2$$$$$ D.$P\to 3,Q\to 4,R\to 2,S\to 1$$$$$
Explanation

Solution

Draw a figure to visualize the hyperbola, its conjugate axis which subtends the angle. Take the tangent of the angle LNO\angle LNO in the triangle LMN and find a relation a=b3a=b\sqrt{3}. Then use the area of a triangle 12×\dfrac{1}{2}\times base×\times perpendicular=43=4\sqrt{3} to find aa and bb. The formulas for length of conjugate axis, eccentricity, distance between the foci, length of latus rectum are 2b,1+b2a2,2ae,2b2a2b,\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}},2ae,\dfrac{2{{b}^{2}}}{a} respectively. $$$$

Complete step-by-step answer:
The given equation of parabola is H:x2a2y2b2=1H:\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1
We see from the figure that the hyperbola cuts xx-axis at the points with coordinates (a,0)(a,0) and (a,0)(-a,0) symmetrically as the given hyperbola is centered at origin. So we denote one of the points of intersection say (a,0)(a,0) asNN. We can denote to (a,0)(-a,0) too but the result will be the same.
Here the conjugate axis LMLM lies on xx-axis and subtends an angle of 60{{60}^{\circ }} at the point NNand the triangle ΔLMN\Delta LMN is formed. As the hyperbola is also symmetric also along the transverse yy–axis , LM=2OL=2bLM=2OL=2b.As the hyperbola is symmetrical along xx-axisLNO=MNO=602=30=θ\angle LNO=\angle MNO=\dfrac{{{60}^{\circ }}}{2}={{30}^{\circ }}=\theta (say). Then

& \tan \theta =\dfrac{b}{a} \\\ & \Rightarrow \tan {{30}^{\circ }}=\dfrac{b}{a} \\\ & \Rightarrow a=b\sqrt{3} \\\ \end{aligned}$$ Using the formula of a area of a triangle with base and height of perpendicular $$\begin{aligned} & \dfrac{1}{2}LM\cdot OL=4\sqrt{3} \\\ & \Rightarrow \dfrac{1}{2}2b\cdot b\sqrt{3}=4\sqrt{3} \\\ & \Rightarrow b=2 \\\ \end{aligned}$$ So $a=2\sqrt{3}$ Now we calculate eccentricity using the formula, $$e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}=\sqrt{1+\dfrac{{{2}^{2}}}{{{\left( 2\sqrt{3} \right)}^{2}}}}=\dfrac{2}{\sqrt{3}}$$ Now we shall check each of the given options . P. The length of the conjugate axis is the length of $LM=2b=4$. So $P\to 4$$$$$ Q. The eccentricity of H is $e=\dfrac{2}{\sqrt{3}}$. So $ \text{Q}\to \text{3}$$$$$ R. The distance between the foci is $2ae=2.2\sqrt{3}.\dfrac{2}{\sqrt{3}}$. So $ \text{R}\to \text{3}$ $$$$ S. The length of the latus rectum is $\dfrac{2{{b}^{2}}}{a}=\dfrac{2{{\left( 2 \right)}^{2}}}{2\sqrt{3}}=\dfrac{4}{\sqrt{3}}$. So $ \text{S}\to \text{3}$.$$$$ **So, the correct answer is “Option B”.** **Note:** While solving problem of conic section like this type, we need to be careful of confusion between the formulas hyperbola from ellipse which is given by $e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}}$. We also note that thoughts have more than one eccentricity. The value of eccentricity for hyperbola is greater than 1 and for ellipse less than 1 .