Question
Question: Let G(x, t) = \[\left\{ \begin{matrix} x(t - 1),whenx \leq t \\ t(x - 1),whent < xandtiscontinuousfu...
Let G(x, t) =
x(t - 1),whenx \leq t \\ t(x - 1),whent < xandtiscontinuousfunctionofxin\lbrack 0,1\rbrack\end{matrix} \right.$$ If g(x) = $\int_{0}^{1}{f(t)}$G(x, t)dt, then which is incorrectA
g(0) + g(1) = 0
B
g(0) = 0
C
g(1) = 1
D
g ¢¢ (x) = f(x)
Answer
g(1) = 1
Explanation
Solution
G(0, t) = 0 for t £ 0 so g(0) = ∫01f(t) . 0 dt = 0
G(1, t) = t . (1 – t) = 0 for t < 1.
Hence g(1) = ∫01f(t). 0 dt = 0
Also, g(x) = ∫0xf(t)t(x – 1) dt + ∫x1f(t)x (t – 1) dt
= (x – 1) ∫xxtf(t) dt + x ∫x1f(t) (t – 1) dt
Henc, g¢(x) = (x – 1) x f(x) + ∫0xtf(t)dt + ∫x1f(t) (t – 1) dt – xf (x) (x – 1)
= ∫x1tf(t)dt – ∫x1f(t)dt
Thus g¢¢(x) = f(x).