Solveeit Logo

Question

Question: Let G(x, t) = \[\left\{ \begin{matrix} x(t - 1),whenx \leq t \\ t(x - 1),whent < xandtiscontinuousfu...

Let G(x, t) =

x(t - 1),whenx \leq t \\ t(x - 1),whent < xandtiscontinuousfunctionofxin\lbrack 0,1\rbrack\end{matrix} \right.$$ If g(x) = $\int_{0}^{1}{f(t)}$G(x, t)dt, then which is incorrect
A

g(0) + g(1) = 0

B

g(0) = 0

C

g(1) = 1

D

g ¢¢ (x) = f(x)

Answer

g(1) = 1

Explanation

Solution

G(0, t) = 0 for t £ 0 so g(0) = 01f(t)\int_{0}^{1}{f(t)} . 0 dt = 0

G(1, t) = t . (1 – t) = 0 for t < 1.

Hence g(1) = 01f(t)\int_{0}^{1}{f(t)}. 0 dt = 0

Also, g(x) = 0xf(t)\int_{0}^{x}{f(t)}t(x – 1) dt + x1f(t)\int_{x}^{1}{f(t)}x (t – 1) dt

= (x – 1) xxtf(t)\int_{x}^{x}{tf(t)} dt + x x1f(t)\int_{x}^{1}{f(t)} (t – 1) dt

Henc, g¢(x) = (x – 1) x f(x) + 0xtf(t)\int_{0}^{x}{tf(t)}dt + x1f(t)\int_{x}^{1}{f(t)} (t – 1) dt – xf (x) (x – 1)

= x1tf(t)\int_{x}^{1}{tf(t)}dt – x1f(t)\int_{x}^{1}{f(t)}dt

Thus g¢¢(x) = f(x).