Solveeit Logo

Question

Question: Let \(g(x) = \displaystyle \int_{1-x}^{1+x} t\,\bigl|f'(t)\bigr|\,dt\) where \(f(x)\) does not behav...

Let g(x)=1x1+xtf(t)dtg(x) = \displaystyle \int_{1-x}^{1+x} t\,\bigl|f'(t)\bigr|\,dt where f(x)f(x) does not behave like a constant function in any interval (a,b)(a,b) and the graph of y=f(x)y = f'(x) is symmetrical about the line x=1x = 1. Then

A

g(x)g(x) is increasing xR\forall x \in \mathbb{R}

B

g(x)g(x) is increasing only for x>1x > 1

C

g(x)g'(x) is an even function

D

g(x)g'(x) is symmetrical about the line x=2x = 2

Answer

g(x)g(x) is increasing ∀ xRx\in\mathbb{R}; g(x)g'(x) is an even function

Explanation

Solution

Compute the derivative by Leibniz rule:

g(x)=(1+x)f(1+x)(1x)f(1x)  (1)=(1+x)f(1+x)+(1x)f(1x).g'(x)= (1+x)\bigl|f'(1+x)\bigr| - \bigl(1 - x\bigr)\bigl|f'(1-x)\bigr|\;(-1) = (1+x)\bigl|f'(1+x)\bigr| + (1-x)\bigl|f'(1-x)\bigr|.

Since f(x)f'(x) is symmetric about x=1x=1, we have f(1+x)=f(1x)\bigl|f'(1+x)\bigr|=\bigl|f'(1-x)\bigr|. Hence

g(x)=f(1+x)[(1+x)+(1x)]=2f(1+x)  0.g'(x) = \bigl|f'(1+x)\bigr|\bigl[(1+x)+(1-x)\bigr] = 2\bigl|f'(1+x)\bigr|\;\ge0.
  • Monotonicity: g(x)0g'(x)\ge0 for all real xx, so gg is increasing on R\mathbb{R}.
  • Evenness:
g(x)=2f(1x)=2f(1+x)=g(x),g'(-x)=2\bigl|f'(1-x)\bigr|=2\bigl|f'(1+x)\bigr|=g'(x),

so g(x)g'(x) is an even function.