Question
Question: Let g(x) = 1 + x − [x] and \(f(x)\left\{ \begin{matrix} - 1, & x & \begin{matrix} < & 0 \end{matri...
Let g(x) = 1 + x − [x] and $f(x)\left{ \begin{matrix}
- 1, & x & \begin{matrix} < & 0 \end{matrix} \ 0, & x & \begin{matrix} = & 0 \end{matrix} \ 1, & x & \begin{matrix}
& 0 \end{matrix} \end{matrix} \right.\ $= . Then for all x, f(g(x)) is equal to (2001 S)
A
x
B
1
C
f(x)
D
g(x)
Answer
1
Explanation
Solution
g(x) = 1 + x − [x]; f(x) $\left{ \begin{matrix}
- 1, \ 0, \ 1, \end{matrix}\begin{matrix} x < 0 \ x = 0 \ x > 0 \end{matrix} \right.\ $
For integral values of x; g(x) = 1 > 0
For x < 0; x – [x] > 0 ⇒ g(x) > 0
(but not integral value)
For x > 0; x −[x] > 0 ⇒ g(x) > 0
∴ g(x) > 0, \overset{̶}{V} x
∴ f(g(x)) = 1, \overset{̶}{V}x
∴ ‘’(2) is the correct alternative.