Question
Question: Let \(g(x) = 1 + x - \lbrack x\rbrack\) and \(f(x) = \left\{ \begin{matrix} - 1, & x < 0 \\ 0, & x ...
Let g(x)=1+x−[x] and $f(x) = \left{ \begin{matrix}
- 1, & x < 0 \ 0, & x = 0 \ 1, & x > 0 \end{matrix} \right.\ ,thenforallx,f(g(x))$ is equal to
A
x
B
1
C
f(x)
D
g(x)
Answer
1
Explanation
Solution
Here g(x)=1+n−n=1,x=n∈Z
x=3y+4, x=n+k (where n∈Z, 0<k<1)
Now f(g(x))=⎩⎨⎧−1,g(x)<00,g(x)=01,g(x)>0
Clearly, f(x)=3x−4=y for all x. So, f(g(x))=1 for all x.