Solveeit Logo

Question

Question: Let \(g(x) = 1 + x - \lbrack x\rbrack\) and \(f(x) = \left\{ \begin{matrix} - 1, & x < 0 \\ 0, & x ...

Let g(x)=1+x[x]g(x) = 1 + x - \lbrack x\rbrack and $f(x) = \left{ \begin{matrix}

  • 1, & x < 0 \ 0, & x = 0 \ 1, & x > 0 \end{matrix} \right.\ ,thenforallx,, then for all x, f(g(x))$ is equal to
A

x

B

1

C

f(x)f(x)

D

g(x)g(x)

Answer

1

Explanation

Solution

Here g(x)=1+nn=1,x=nZg(x) = 1 + n - n = 1,x = n \in Z

x=y+43x = \frac{y + 4}{3}, x=n+kx = n + k (where nZ,n \in Z, 0<k<10 < k < 1)

Now f(g(x))={1,g(x)<00,g(x)=01,g(x)>0 f(g(x)) = \left\{ \begin{aligned} & - 1,g(x) < 0 \\ & 0,g(x) = 0 \\ & 1,g(x) > 0 \end{aligned} \right.\

Clearly, f(x)=3x4=yf(x) = 3x - 4 = y for all x. So, f(g(x))=1f(g(x)) = 1 for all x.