Solveeit Logo

Question

Question: Let g'(x) \> 0 and f’ (x) \< 0 ∀ x ∈ R then...

Let g'(x) > 0 and f’ (x) < 0 ∀ x ∈ R then

A

g(f(x + 1)) > g(f(x − 1))

B

f(g(x – 1)) > f(g(x + 1)

C

g(f(x + 1)) < g(f(x − 1))

D

g(g(x + 1)) < g(g(x – 1))

Answer

g(f(x + 1)) < g(f(x − 1))

Explanation

Solution

Clearly g(x) is increasing and f(x) is decreasing ∀ x ∈ R .

⇒ f(x + 1) < f(x - 1) and g(x + 1) > g(x - 1)

⇒ g(f(x + 1)) < g(f(x - 1)).