Question
Question: Let g'(x) \> 0 and f’ (x) \< 0 ∀ x ∈ R then...
Let g'(x) > 0 and f’ (x) < 0 ∀ x ∈ R then
A
g(f(x + 1)) > g(f(x − 1))
B
f(g(x – 1)) > f(g(x + 1)
C
g(f(x + 1)) < g(f(x − 1))
D
g(g(x + 1)) < g(g(x – 1))
Answer
g(f(x + 1)) < g(f(x − 1))
Explanation
Solution
Clearly g(x) is increasing and f(x) is decreasing ∀ x ∈ R .
⇒ f(x + 1) < f(x - 1) and g(x + 1) > g(x - 1)
⇒ g(f(x + 1)) < g(f(x - 1)).