Question
Mathematics Question on Differentiability
Let g(x) be a linear function and f(x)={g(x), (2+x1+x)x1,x≤0x>0 is continuous at x=0. If f′(1)=f(−1), then the value of g(3) is
A
31loge(9e1/34)
B
31loge(94)+1
C
loge(94)−1
D
loge(9e1/34)
Answer
loge(9e1/34)
Explanation
Solution
Let g(x)=ax+b.
Now function f(x) is continuous at x=0.
∴limx→0f(x)=f(0) limx→0(2+x1+x)x1=b ⇒0=b ∴g(x)=ax
Now, for x>0,
f′(x)=x1(2+x1+x)x1⋅(2+x)21+(2+x1+x)x1⋅ln(2+x1+x)⋅x21 f′(1)=91−32ln(32)
And f(−1)=g(−1)=−a
a=2ln(32)−91 g(3)=2ln(32)−31 =ln(9e−1/34)