Solveeit Logo

Question

Mathematics Question on Differentiability

Let g(x)g(x) be a linear function and f(x)={g(x),x0 (1+x2+x)1x,x>0f(x) = \begin{cases} g(x), & x \leq 0 \\\ \left( \frac{1 + x}{2 + x} \right)^{\frac{1}{x}}, & x > 0 \end{cases} is continuous at x=0x = 0. If f(1)=f(1)f'(1) = f(-1), then the value of g(3)g(3) is

A

13loge(49e1/3)\frac{1}{3} \log_e \left( \frac{4}{9e^{1/3}} \right)

B

13loge(49)+1\frac{1}{3} \log_e \left( \frac{4}{9} \right) + 1

C

loge(49)1\log_e \left( \frac{4}{9} \right) - 1

D

loge(49e1/3)\log_e \left( \frac{4}{9e^{1/3}} \right)

Answer

loge(49e1/3)\log_e \left( \frac{4}{9e^{1/3}} \right)

Explanation

Solution

Let g(x)=ax+bg(x) = ax + b.

Now function f(x)f(x) is continuous at x=0x = 0.

limx0f(x)=f(0)\therefore \lim_{x \to 0} f(x) = f(0) limx0(1+x2+x)1x=b\lim_{x \to 0} \left( 1 + x \over 2 + x \right)^{1 \over x} = b 0=b\Rightarrow 0 = b g(x)=ax\therefore g(x) = ax

Now, for x>0x > 0,

f(x)=1x(1+x2+x)1x1(2+x)2+(1+x2+x)1xln(1+x2+x)1x2f'(x) = \frac{1}{x} \left( 1 + x \over 2 + x \right)^{1 \over x} \cdot \frac{1}{(2 + x)^2} + \left( 1 + x \over 2 + x \right)^{1 \over x} \cdot \ln \left( 1 + x \over 2 + x \right) \cdot \frac{1}{x^2} f(1)=1923ln(23)f'(1) = \frac{1}{9} - \frac{2}{3} \ln \left( \frac{2}{3} \right)

And f(1)=g(1)=af(-1) = g(-1) = -a

a=2ln(23)19a = 2 \ln \left( \frac{2}{3} \right) - \frac{1}{9} g(3)=2ln(23)13g(3) = 2 \ln \left( \frac{2}{3} \right) - \frac{1}{3} =ln(49e1/3)= \ln \left( \frac{4}{9 e^{-1/3}} \right)