Solveeit Logo

Question

Mathematics Question on Differentiation

Let g(x)=3f(x3)+f(3x)g(x) = 3f\left(\frac{x}{3}\right) + f(3 - x) and f(x)>0f''(x) >0 for all x(0,3)x \in (0, 3). If gg is decreasing in (0,α)(0, \alpha) and increasing in (α,3)(\alpha, 3), then 8α8\alpha is:

A

24

B

0

C

18

D

20

Answer

18

Explanation

Solution

Given:
g(x)=3f(x3)+f(3x)andf(x)>0for x(0,3).g(x) = 3f\left(\frac{x}{3}\right) + f(3 - x) \quad \text{and} \quad f''(x) > 0 \quad \text{for } x \in (0, 3).

Since f(x)>0f''(x) > 0, f(x)f'(x) is an increasing function.

To find intervals where g(x)g(x) is decreasing, we differentiate:
g(x)=3×13f(x3)f(3x)=f(x3)f(3x).g'(x) = 3 \times \frac{1}{3} f'\left(\frac{x}{3}\right) - f'(3 - x) = f'\left(\frac{x}{3}\right) - f'(3 - x).

For g(x)g(x) to be decreasing in (0,α)(0, \alpha):
g(x)<0    f(x3)<f(3x).g'(x) < 0 \implies f'\left(\frac{x}{3}\right) < f'(3 - x).

Setting equality for the transition point:
f(α3)=f(3α).f'\left(\frac{\alpha}{3}\right) = f'(3 - \alpha).

From symmetry and the increasing nature of ff', we find:
α=94.\alpha = \frac{9}{4}.

Calculating 8α8\alpha:
8α=8×94=18.8\alpha = 8 \times \frac{9}{4} = 18.

The Correct answer is: 18