Solveeit Logo

Question

Question: Let $g: R \rightarrow \{4\}$ be function given by $g(x) = x^3(f'(t) - 2) + x^2 f''(t) + 4x(f(0) + 6)...

Let g:R{4}g: R \rightarrow \{4\} be function given by g(x)=x3(f(t)2)+x2f(t)+4x(f(0)+6)+4g(x) = x^3(f'(t) - 2) + x^2 f''(t) + 4x(f(0) + 6) + 4 and h(x)h(x) is defined as:

h(x)={0xf(t)2dt,0x6(x6)2+20,6<x12h(x) = \begin{cases} \int_{0}^{x} |f(t) - 2| dt, & 0 \leq x \leq 6 \\ (x - 6)^2 + 20, & 6 < x \leq 12 \end{cases}

If number of integers in the range of h(x)h(x) is NN then _______.

Answer

57

Explanation

Solution

The condition g:R{4}g: R \rightarrow \{4\} implies that g(x)g(x) is a constant function equal to 4. For the given polynomial g(x)g(x) to be constant, the coefficients of x3x^3, x2x^2, and xx must be zero. This leads to:

  1. f(t)2=0    f(t)=2f'(t) - 2 = 0 \implies f'(t) = 2.
  2. f(t)=0f''(t) = 0.
  3. f(0)+6=0    f(0)=6f(0) + 6 = 0 \implies f(0) = -6.

From f(t)=2f'(t) = 2 and f(t)=0f''(t) = 0, we deduce that f(t)f(t) is a linear function of the form f(t)=2t+Cf(t) = 2t + C. Using the condition f(0)=6f(0) = -6, we find 2(0)+C=62(0) + C = -6, which gives C=6C = -6. Therefore, f(t)=2t6f(t) = 2t - 6.

Now, we analyze h(x)h(x):

Case 1: 0x60 \leq x \leq 6 h(x)=0xf(t)2dt=0x(2t6)2dt=0x2t8dth(x) = \int_{0}^{x} |f(t) - 2| dt = \int_{0}^{x} |(2t - 6) - 2| dt = \int_{0}^{x} |2t - 8| dt. The expression 2t8|2t - 8| changes sign at t=4t = 4.

  • For 0x40 \leq x \leq 4: 2t8=(2t8)=82t|2t - 8| = -(2t - 8) = 8 - 2t since 2t802t - 8 \leq 0 in [0,x][0, x]. h(x)=0x(82t)dt=[8tt2]0x=8xx2h(x) = \int_{0}^{x} (8 - 2t) dt = [8t - t^2]_{0}^{x} = 8x - x^2. The range of h(x)=8xx2h(x) = 8x - x^2 for x[0,4]x \in [0, 4] is [h(0),h(4)]=[0,16][h(0), h(4)] = [0, 16].

  • For 4<x64 < x \leq 6: We split the integral at t=4t=4. h(x)=04(82t)dt+4x(2t8)dth(x) = \int_{0}^{4} (8 - 2t) dt + \int_{4}^{x} (2t - 8) dt. 04(82t)dt=[8tt2]04=3216=16\int_{0}^{4} (8 - 2t) dt = [8t - t^2]_{0}^{4} = 32 - 16 = 16. 4x(2t8)dt=[t28t]4x=(x28x)(1632)=x28x+16=(x4)2\int_{4}^{x} (2t - 8) dt = [t^2 - 8t]_{4}^{x} = (x^2 - 8x) - (16 - 32) = x^2 - 8x + 16 = (x - 4)^2. So, h(x)=16+(x4)2h(x) = 16 + (x - 4)^2. The range of h(x)=16+(x4)2h(x) = 16 + (x - 4)^2 for x(4,6]x \in (4, 6] is (16+(44)2,16+(64)2]=(16,16+4]=(16,20](16 + (4-4)^2, 16 + (6-4)^2] = (16, 16 + 4] = (16, 20].

Combining these two sub-cases for 0x60 \leq x \leq 6, the range of h(x)h(x) is [0,16](16,20]=[0,20][0, 16] \cup (16, 20] = [0, 20].

Case 2: 6<x126 < x \leq 12 h(x)=(x6)2+20h(x) = (x - 6)^2 + 20. This is an increasing quadratic function for x(6,12]x \in (6, 12]. The range of h(x)h(x) for x(6,12]x \in (6, 12] is ((66)2+20,(126)2+20]=(0+20,62+20]=(20,36+20]=(20,56]((6-6)^2 + 20, (12-6)^2 + 20] = (0 + 20, 6^2 + 20] = (20, 36 + 20] = (20, 56].

Overall Range of h(x)h(x): The domain of h(x)h(x) is [0,12][0, 12]. The overall range is the union of the ranges from the two cases: [0,20](20,56]=[0,56][0, 20] \cup (20, 56] = [0, 56].

Number of Integers in the Range: The range of h(x)h(x) is [0,56][0, 56]. The integers in this range are 0,1,2,,560, 1, 2, \dots, 56. The number of integers, NN, is 560+1=5756 - 0 + 1 = 57. The question asks for the value of NN, which is 57.