Solveeit Logo

Question

Differential Equations Question on Differential Equations

Let 𝑔: ℝ β†’ ℝ be a continuous function. Which one of the following is the solution of the differential equation
d2ydx2+y=g(x)    for x∈R\frac{d^2y}{dx^2}+y=g(x)\ \ \ \ \text{for}\ x \in \R,
satisfying the conditions y(0) = 0, y'(0) = 1 ?

A

y(x)=sin⁑xβˆ’βˆ«0xsin⁑(xβˆ’t)g(t)dty(x)=\sin x-\int^x_0 \sin(x-t)g(t)dt

B

y(x)=sin⁑x+∫0xsin⁑(xβˆ’t)g(t)dty(x)=\sin x+\int^x_0 \sin(x-t)g(t)dt

C

y(x)=sin⁑xβˆ’βˆ«0xcos⁑(xβˆ’t)g(t)dty(x)=\sin x-\int^x_0 \cos(x-t)g(t)dt

D

y(x)=sin⁑x+∫0xcos⁑(xβˆ’t)g(t)dty(x)=\sin x+\int^x_0 \cos(x-t)g(t)dt

Answer

y(x)=sin⁑x+∫0xsin⁑(xβˆ’t)g(t)dty(x)=\sin x+\int^x_0 \sin(x-t)g(t)dt

Explanation

Solution

The correct option is (B) : y(x)=sin⁑x+∫0xsin⁑(xβˆ’t)g(t)dty(x)=\sin x+\int^x_0 \sin(x-t)g(t)dt.