Solveeit Logo

Question

Question: Let \[g\left( x \right)=\left\\{ \begin{aligned} & \dfrac{\sqrt{x+1}-1}{\sqrt{x}},x>0 \\\ & ...

Let g\left( x \right)=\left\\{ \begin{aligned} & \dfrac{\sqrt{x+1}-1}{\sqrt{x}},x>0 \\\ & 0,x=0 \\\ \end{aligned} \right.
Then g is
(a) Continuous and differentiable at x=0x=0
(b) Continuous and differentiable for all x>0x>0
(c) Continuous for all x>0x>0
(d) Not right differentiable at x=0x=0

Explanation

Solution

Hint: Check continuity and differentiability for the given function around 0 by applying the limits.

Complete step-by-step answer:
We have the function of the form g(x)=x+11xg\left( x \right)=\dfrac{\sqrt{x+1}-1}{\sqrt{x}} for x>0x>0 and g(x)=0g\left( x \right)=0 at x=0x=0.
We will begin by checking the continuity of the function around 0.
To check the continuity of the function g(x)g\left( x \right) around point a, we have limxa+g(x)=limh0g(a+h)=g(a)\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,g\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,g\left( a+h \right)=g\left( a \right) and limxag(x)=limh0g(ah)=g(a)\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,g\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,g\left( a-h \right)=g\left( a \right).
We will find the continuity around point a=0a=0.
As g(x)g\left( x \right) is defined only for x0x\ge 0, we need to check only the limit on the right side.
Thus, we have limx0+g(x)=limh0g(0+h)=limh00+h+110+h=limh0h+11h.....(1)\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,g\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,g\left( 0+h \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{0+h+1}-1}{\sqrt{0+h}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{h+1}-1}{\sqrt{h}}.....\left( 1 \right).
As limh0h+11h=00\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{h+1}-1}{\sqrt{h}}=\dfrac{0}{0} , we will use L’Hopital Rule to find the limit which states that if limhau(h)v(h)=00\underset{h\to a}{\mathop{\lim }}\,\dfrac{u\left( h \right)}{v\left( h \right)}=\dfrac{0}{0} then, we solve the limit by limhau(h)v(h)=limhau(h)v(h)=u(a)v(a)\underset{h\to a}{\mathop{\lim }}\,\dfrac{u\left( h \right)}{v\left( h \right)}=\underset{h\to a}{\mathop{\lim }}\,\dfrac{u'\left( h \right)}{v'\left( h \right)}=\dfrac{u'\left( a \right)}{v'\left( a \right)}.
Substituting u(h)=h+11,v(h)=hu\left( h \right)=\sqrt{h+1}-1,v\left( h \right)=\sqrt{h} and limh0\underset{h\to 0}{\mathop{\lim }}\, we have limh0u(h)v(h)=limh0u(h)v(h)limh0h+11h=limh0ddh(h+11)ddh(h).....(2)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{u\left( h \right)}{v\left( h \right)}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{u'\left( h \right)}{v'\left( h \right)}\Rightarrow \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{h+1}-1}{\sqrt{h}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dh}\left( \sqrt{h+1}-1 \right)}{\dfrac{d}{dh}\left( \sqrt{h} \right)}.....\left( 2 \right).
Thus, we will differentiate the functions u(h)u\left( h \right) and v(h)v\left( h \right).
To find the derivative of the function y=(x+a)n+by={{\left( x+a \right)}^{n}}+b, we have dydx=n(x+a)n1\dfrac{dy}{dx}=n{{\left( x+a \right)}^{n-1}}.
Thus, we have ddh(h+11)=12h+1.....(3)\dfrac{d}{dh}\left( \sqrt{h+1}-1 \right)=\dfrac{1}{2\sqrt{h+1}}.....\left( 3 \right) by substituting a=1,n=12,b=1a=1,n=\dfrac{1}{2},b=-1 in the above equation.
Similarly, we have ddh(h)=12h.....(4)\dfrac{d}{dh}\left( \sqrt{h} \right)=\dfrac{1}{2\sqrt{h}}.....\left( 4 \right) by substituting a=0,n=12,b=0a=0,n=\dfrac{1}{2},b=0 in the above equation.
Substituting equation (3)\left( 3 \right) and (4)\left( 4 \right) in equation (2)\left( 2 \right), we have limh0h+11h=limh0ddh(h+11)ddh(h)=limh0121+h12h=limh0hh+1.....(5)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{h+1}-1}{\sqrt{h}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dh}\left( \sqrt{h+1}-1 \right)}{\dfrac{d}{dh}\left( \sqrt{h} \right)}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{2\sqrt{1+h}}}{\dfrac{1}{2\sqrt{h}}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{h}}{\sqrt{h+1}}.....\left( 5 \right).
Now, applying the limit, we have limh0hh+1=0.....(6)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{h}}{\sqrt{h+1}}=0.....\left( 6 \right).
Using equation (1)\left( 1 \right),(2)\left( 2 \right), (5)\left( 5 \right) and (6)\left( 6 \right), we have limx0+g(x)=limh0h+11h=limh0hh+1=0\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,g\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{h+1}-1}{\sqrt{h}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{h}}{\sqrt{h+1}}=0.
Thus, we have limx0+g(x)=0=g(0)\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,g\left( x \right)=0=g\left( 0 \right).
Hence, the function g(x)g\left( x \right) is continuous for x0x\ge 0.
Now, we will check the differentiability of g(x)g\left( x \right).
For x>0x>0, we have g(x)=x+11xg\left( x \right)=\dfrac{\sqrt{x+1}-1}{\sqrt{x}}. We observe that g(x)g\left( x \right) is a composition of polynomials which is differentiable everywhere except at points where the function tends to \infty which happens when the denominator tends to 0.
But for x>0x>0, the denominator of g(x)g\left( x \right) never equals zero.
Hence, g(x)g\left( x \right) is continuous and differentiable for x>0x>0.
We will now check the differentiability of g(x)g\left( x \right) at x=0x=0.
To check the differentiability of the function g(x)g\left( x \right) around point a, we have g(a)=limh0g(a+h)g(a)hg'\left( a \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{g\left( a+h \right)-g\left( a \right)}{h} and g(a)=limh0g(ah)g(a)hg'\left( a \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{g\left( a-h \right)-g\left( a \right)}{-h}.
We will find the continuity around point a=0a=0.
As g(x)g\left( x \right) is defined only for x0x\ge 0, we need to check only the limit on the right side.
We know that g(x)=0g\left( x \right)=0 at x=0x=0.
Thus, we have ddxg(x)x=0=g(0)(7)\dfrac{d}{dx}g\left( x \right){{|}_{x=0}}=g'\left( 0 \right) \left( 7 \right).
Now, we have g(a)=limh0g(a+h)g(a)h=limh0h+11h0h=limh0h+11hh.....(8)g'\left( a \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{g\left( a+h \right)-g\left( a \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{\sqrt{h+1}-1}{\sqrt{h}}-0}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{h+1}-1}{h\sqrt{h}}.....\left( 8 \right).
As limh0h+11hh=00\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{h+1}-1}{h\sqrt{h}}=\dfrac{0}{0} , we will use L’Hopital Rule to find the limit which states that if limhau(h)w(h)=00\underset{h\to a}{\mathop{\lim }}\,\dfrac{u\left( h \right)}{w\left( h \right)}=\dfrac{0}{0} then, we solve the limit by limhau(h)w(h)=limhau(h)w(h)=u(a)w(a)\underset{h\to a}{\mathop{\lim }}\,\dfrac{u\left( h \right)}{w\left( h \right)}=\underset{h\to a}{\mathop{\lim }}\,\dfrac{u'\left( h \right)}{w'\left( h \right)}=\dfrac{u'\left( a \right)}{w'\left( a \right)}.
Substituting u(h)=h+11,w(h)=hh=h32u\left( h \right)=\sqrt{h+1}-1,w\left( h \right)=h\sqrt{h}={{h}^{\dfrac{3}{2}}} andlimh0\underset{h\to 0}{\mathop{\lim }}\,we have limh0u(h)w(h)=limh0u(h)w(h)limh0h+11hh=limh0ddh(h+11)ddh(h32).....(9)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{u\left( h \right)}{w\left( h \right)}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{u'\left( h \right)}{w'\left( h \right)}\Rightarrow \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{h+1}-1}{h\sqrt{h}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dh}\left( \sqrt{h+1}-1 \right)}{\dfrac{d}{dh}\left( {{h}^{\dfrac{3}{2}}} \right)}.....\left( 9 \right).
To find the derivative of the function y=(x+a)n+by={{\left( x+a \right)}^{n}}+b, we have dydx=n(x+a)n1\dfrac{dy}{dx}=n{{\left( x+a \right)}^{n-1}}.
We have ddh(h32)=3h2.....(10)\dfrac{d}{dh}\left( {{h}^{\dfrac{3}{2}}} \right)=\dfrac{3\sqrt{h}}{2}.....\left( 10 \right) by substituting a=0,n=32,b=0a=0,n=\dfrac{3}{2},b=0 in the above equation.
Substituting equation (3)\left( 3 \right) and (10)\left( 10 \right) in equation (9)\left( 9 \right), we have limh0h+11hh=limh0ddh(h+11)ddh(h32)=limh0121+h3h2=limh013hh+1\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{h+1}-1}{h\sqrt{h}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dh}\left( \sqrt{h+1}-1 \right)}{\dfrac{d}{dh}\left( {{h}^{\dfrac{3}{2}}} \right)}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{2\sqrt{1+h}}}{\dfrac{3\sqrt{h}}{2}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{3\sqrt{h}\sqrt{h+1}}.
We observe that limh013hh+1=10=.....(11)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{3\sqrt{h}\sqrt{h+1}}=\dfrac{1}{0}=\infty .....\left( 11 \right).
Hence, using equation (7)\left( 7 \right),(8)\left( 8 \right), (9)\left( 9 \right) and (11)\left( 11 \right), we have g(a)=0limh0g(a+h)g(a)h=g'\left( a \right)=0\ne \underset{h\to 0}{\mathop{\lim }}\,\dfrac{g\left( a+h \right)-g\left( a \right)}{h}=\infty .
Hence, g(x)g\left( x \right) is continuous but not differentiable for x0x\ge 0, which is option (c), (d).

Note: It’s necessary to use the L'Hopital Rule to find the limits. If we will simply apply the limits, we will get an incorrect answer. Also, one must check the condition of continuity and differentiability using First Principle.