Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let G be the centroid of a-triangle ABC. If AB=a,AC=b\overrightarrow{AB}=\overrightarrow{a},\overrightarrow{AC}=\overrightarrow{b} , then the bisector AB\overrightarrow{AB} in terms of vectors a\overrightarrow{a} and b\overrightarrow{b} is

A

23(a+b)\frac{2}{3}(\overrightarrow{a}+\overrightarrow{b})

B

16(a+b)\frac{1}{6}(\overrightarrow{a}+\overrightarrow{b})

C

13(a+b)\frac{1}{3}(\overrightarrow{a}+\overrightarrow{b})

D

12(a+b)\frac{1}{2}(\overrightarrow{a}+\overrightarrow{b})

Answer

13(a+b)\frac{1}{3}(\overrightarrow{a}+\overrightarrow{b})

Explanation

Solution

Take AA as origin. Then position vectors of AA, BB, CC are 0\vec{0}, a\vec{a}, b\vec{b} respectively. \therefore position vector of centroid is 0+a+b3\frac{0+\vec{a}+\vec{b}}{3} i.e., a+b3\frac{\vec{a}+\vec{b}}{3} AG=a+b3\therefore \overrightarrow{AG}=\frac{\vec{a}+\vec{b}}{3}