Solveeit Logo

Question

Question: Let $g$ be a real-valued differentiable function on $R$ such that $g(x) = 3e^{x-2} + 4\int_{2}^{x} \...

Let gg be a real-valued differentiable function on RR such that g(x)=3ex2+42x2t2+6t+5dtg(x) = 3e^{x-2} + 4\int_{2}^{x} \sqrt{2t^2 + 6t + 5}dt xR\forall x \in R and let g1g^{-1} be the inverse function of gg. If (g1)(3)(g^{-1})'(3) is equal to p/qp/q where pp and qq are relatively prime natural numbers, then find (p+q)(p+q).

A

24

B

34

C

44

D

64

Answer

24

Explanation

Solution

To find (g1)(3)(g^{-1})'(3), we use the formula for the derivative of an inverse function: (g1)(y)=1g(x)(g^{-1})'(y) = \frac{1}{g'(x)} where y=g(x)y = g(x).

1. Find xx such that g(x)=3g(x) = 3. The given function is g(x)=3ex2+42x2t2+6t+5dtg(x) = 3e^{x-2} + 4\int_{2}^{x} \sqrt{2t^2 + 6t + 5}dt. Let's test x=2x=2: g(2)=3e22+4222t2+6t+5dtg(2) = 3e^{2-2} + 4\int_{2}^{2} \sqrt{2t^2 + 6t + 5}dt g(2)=3e0+40g(2) = 3e^0 + 4 \cdot 0 g(2)=31+0g(2) = 3 \cdot 1 + 0 g(2)=3g(2) = 3 So, when g(x)=3g(x) = 3, we have x=2x = 2. Therefore, we need to calculate (g1)(3)=1g(2)(g^{-1})'(3) = \frac{1}{g'(2)}.

2. Find g(x)g'(x). Differentiate g(x)g(x) with respect to xx: g(x)=ddx(3ex2)+ddx(42x2t2+6t+5dt)g'(x) = \frac{d}{dx}\left(3e^{x-2}\right) + \frac{d}{dx}\left(4\int_{2}^{x} \sqrt{2t^2 + 6t + 5}dt\right) Using the chain rule for the exponential term and the Fundamental Theorem of Calculus for the integral term: ddx(3ex2)=3ex2ddx(x2)=3ex21=3ex2\frac{d}{dx}(3e^{x-2}) = 3e^{x-2} \cdot \frac{d}{dx}(x-2) = 3e^{x-2} \cdot 1 = 3e^{x-2}. ddx(42x2t2+6t+5dt)=42x2+6x+5\frac{d}{dx}\left(4\int_{2}^{x} \sqrt{2t^2 + 6t + 5}dt\right) = 4\sqrt{2x^2 + 6x + 5}. So, g(x)=3ex2+42x2+6x+5g'(x) = 3e^{x-2} + 4\sqrt{2x^2 + 6x + 5}.

3. Find g(2)g'(2). Substitute x=2x=2 into the expression for g(x)g'(x): g(2)=3e22+42(2)2+6(2)+5g'(2) = 3e^{2-2} + 4\sqrt{2(2)^2 + 6(2) + 5} g(2)=3e0+42(4)+12+5g'(2) = 3e^0 + 4\sqrt{2(4) + 12 + 5} g(2)=31+48+12+5g'(2) = 3 \cdot 1 + 4\sqrt{8 + 12 + 5} g(2)=3+425g'(2) = 3 + 4\sqrt{25} g(2)=3+45g'(2) = 3 + 4 \cdot 5 g(2)=3+20g'(2) = 3 + 20 g(2)=23g'(2) = 23.

4. Calculate (g1)(3)(g^{-1})'(3). (g1)(3)=1g(2)=123(g^{-1})'(3) = \frac{1}{g'(2)} = \frac{1}{23}.

5. Determine (p+q)(p+q). The problem states that (g1)(3)=p/q(g^{-1})'(3) = p/q, where pp and qq are relatively prime natural numbers. We have pq=123\frac{p}{q} = \frac{1}{23}. Thus, p=1p=1 and q=23q=23. These are relatively prime natural numbers. We need to find (p+q)(p+q): p+q=1+23=24p+q = 1 + 23 = 24.

The final answer is 24\boxed{\text{24}}.

Explanation of the solution:

  1. Identify x0x_0 such that g(x0)=3g(x_0)=3. By inspection, g(2)=3e22+4222t2+6t+5dt=3e0+0=3g(2)=3e^{2-2} + 4\int_{2}^{2} \sqrt{2t^2 + 6t + 5}dt = 3e^0 + 0 = 3. So x0=2x_0=2.
  2. The derivative of the inverse function is given by (g1)(3)=1g(2)(g^{-1})'(3) = \frac{1}{g'(2)}.
  3. Differentiate g(x)g(x) using the chain rule and the Fundamental Theorem of Calculus: g(x)=ddx(3ex2)+ddx(42x2t2+6t+5dt)=3ex2+42x2+6x+5g'(x) = \frac{d}{dx}(3e^{x-2}) + \frac{d}{dx}(4\int_{2}^{x} \sqrt{2t^2 + 6t + 5}dt) = 3e^{x-2} + 4\sqrt{2x^2 + 6x + 5}.
  4. Evaluate g(2)g'(2): g(2)=3e22+42(2)2+6(2)+5=3e0+48+12+5=3+425=3+4(5)=3+20=23g'(2) = 3e^{2-2} + 4\sqrt{2(2)^2 + 6(2) + 5} = 3e^0 + 4\sqrt{8+12+5} = 3 + 4\sqrt{25} = 3 + 4(5) = 3+20 = 23.
  5. Calculate (g1)(3)=123(g^{-1})'(3) = \frac{1}{23}.
  6. Given (g1)(3)=p/q(g^{-1})'(3) = p/q, we have p=1p=1 and q=23q=23.
  7. Find p+q=1+23=24p+q = 1+23 = 24.

The final answer is 24\boxed{\text{24}}.