Solveeit Logo

Question

Question: Let g be a differentiable function satisfying $\int_{0}^{x}(x-t+1)g(t)dt=x^4+x^2 \forall x \geq 0$,...

Let g be a differentiable function satisfying

0x(xt+1)g(t)dt=x4+x2x0\int_{0}^{x}(x-t+1)g(t)dt=x^4+x^2 \forall x \geq 0, then the value of

0112g(x)+g(x)+10dx=\int_{0}^{1}\frac{12}{g'(x)+g(x)+10}dx=____.

Answer

π4\frac{\pi}{4}

Explanation

Solution

The given integral equation is:

0x(xt+1)g(t)dt=x4+x2x0\int_{0}^{x}(x-t+1)g(t)dt=x^4+x^2 \quad \forall x \geq 0

We can split the integral on the left-hand side:

0x(x+1)g(t)dt0xtg(t)dt=x4+x2\int_{0}^{x}(x+1)g(t)dt - \int_{0}^{x}tg(t)dt = x^4+x^2

Since (x+1)(x+1) is independent of tt, we can take it out of the first integral:

(x+1)0xg(t)dt0xtg(t)dt=x4+x2() (x+1)\int_{0}^{x}g(t)dt - \int_{0}^{x}tg(t)dt = x^4+x^2 \quad (*)

Now, we differentiate both sides with respect to xx. We use the Leibniz integral rule, which states that if F(x)=a(x)b(x)f(x,t)dtF(x) = \int_{a(x)}^{b(x)} f(x,t) dt, then F(x)=f(x,b(x))b(x)f(x,a(x))a(x)+a(x)b(x)xf(x,t)dtF'(x) = f(x, b(x)) b'(x) - f(x, a(x)) a'(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t) dt.

For the first term, (x+1)0xg(t)dt(x+1)\int_{0}^{x}g(t)dt:

Using the product rule and the Fundamental Theorem of Calculus (ddx0xg(t)dt=g(x)\frac{d}{dx}\int_0^x g(t)dt = g(x)):

ddx[(x+1)0xg(t)dt]=10xg(t)dt+(x+1)g(x)\frac{d}{dx}\left[ (x+1)\int_{0}^{x}g(t)dt \right] = 1 \cdot \int_{0}^{x}g(t)dt + (x+1) \cdot g(x)

=0xg(t)dt+xg(x)+g(x)= \int_{0}^{x}g(t)dt + xg(x) + g(x)

For the second term, 0xtg(t)dt\int_{0}^{x}tg(t)dt:

Using the Fundamental Theorem of Calculus:

ddx[0xtg(t)dt]=xg(x)\frac{d}{dx}\left[ \int_{0}^{x}tg(t)dt \right] = xg(x)

Differentiating the right-hand side, x4+x2x^4+x^2:

ddx(x4+x2)=4x3+2x\frac{d}{dx}(x^4+x^2) = 4x^3+2x

Now, substitute these differentiated terms back into the differentiated equation ()(*):

(0xg(t)dt+xg(x)+g(x))xg(x)=4x3+2x\left( \int_{0}^{x}g(t)dt + xg(x) + g(x) \right) - xg(x) = 4x^3+2x

0xg(t)dt+g(x)=4x3+2x(1)\int_{0}^{x}g(t)dt + g(x) = 4x^3+2x \quad (1)

We need to find g(x)+g(x)g'(x)+g(x), so we differentiate equation (1) with respect to xx again.

Differentiating 0xg(t)dt\int_{0}^{x}g(t)dt gives g(x)g(x) (by Fundamental Theorem of Calculus).

Differentiating g(x)g(x) gives g(x)g'(x).

Differentiating 4x3+2x4x^3+2x gives 12x2+212x^2+2.

So, differentiating equation (1) yields:

g(x)+g(x)=12x2+2g(x) + g'(x) = 12x^2+2

Now we need to evaluate the integral 0112g(x)+g(x)+10dx\int_{0}^{1}\frac{12}{g'(x)+g(x)+10}dx.

Substitute the expression for g(x)+g(x)g'(x)+g(x):

0112(12x2+2)+10dx\int_{0}^{1}\frac{12}{(12x^2+2)+10}dx

=011212x2+12dx= \int_{0}^{1}\frac{12}{12x^2+12}dx

Factor out 12 from the denominator:

=011212(x2+1)dx= \int_{0}^{1}\frac{12}{12(x^2+1)}dx

=011x2+1dx= \int_{0}^{1}\frac{1}{x^2+1}dx

This is a standard integral, 1x2+a2dx=1aarctan(xa)\int \frac{1}{x^2+a^2}dx = \frac{1}{a}\arctan\left(\frac{x}{a}\right). Here a=1a=1.

=[arctan(x)]01= \left[ \arctan(x) \right]_{0}^{1}

=arctan(1)arctan(0)= \arctan(1) - \arctan(0)

=π40= \frac{\pi}{4} - 0

=π4= \frac{\pi}{4}