Solveeit Logo

Question

Mathematics Question on Circle

Let GG be a circle of radius R>0R>0. Let G1,G2,,GnG _1, G _2, \ldots, G _{ n } be nn circles of equal radius r>0r>0. Suppose each of the nn circles G1,G2,,GnG _1, G _2, \ldots, G _{ n } touches the circle GG externally. Also, for i=1,2,,n1i =1,2, \ldots, n -1, the circle GiG _{ i } touches Gi+1G _{ i +1} externally, and GnG _{ n } touches G1G _1 externally. Then, which of the following statements is/are TRUE?

A

If n=4n =4, then (21)r<R(\sqrt{2}-1) r < R

B

If n=5n =5, then r<Rr < R

C

If n=8n =8, then (21)r<R(\sqrt{2}-1) r < R

D

If n=12n =12, then 2(3+1)r>R\sqrt{2}(\sqrt{3}+1) r > R

Answer

If n=12n =12, then 2(3+1)r>R\sqrt{2}(\sqrt{3}+1) r > R

Explanation

Solution

So, the correct option is (D): If n=12n =12, then 2(3+1)r>R\sqrt{2}(\sqrt{3}+1) r > R