Question
Mathematics Question on Increasing and Decreasing Functions
Let g:(0,∞)→R be a differentiable function such that ∫(ex+1x(cosx−sinx)+(ex+1)2g(x)(ex+1−xex))dx=ex+1xg(x)+c, for all x>0, where c is an arbitrary constant. Then:
g is decreasing in (0,4π)
g′ is increasing in (0,4π)
g+g′ is increasing in (0,2π)
g-g' is increasing in (0,2π)
g-g' is increasing in (0,2π)
Solution
∫(ex+1x(cosx−sinx)+(ex+1)2g(x)(ex+1−xex))dx=ex+1xg(x)+c,
Differentiating on both sides
ex+1x(cosx−sinx)+(ex+1)2g(x)(ex+1−xex)
=(ex+1)2(ex+1)(g(x)+xgx1)−xg(x)ex
=(ex+1)2g(x)[ex+1−xex]+(ex+1)2xg′(x)(ex+1)
=ex+1x(cosx−sinx)
=ex+1xg′(x)
⇒ g‘(x)=cosx−sinx>0 in (0,4π)
⇒ g(x) is increasing in (0,4π)
⇒ Option (A) is wrong.
Now,
g”(x)=−sinx−cosx<0 in (0,4π)
⇒ g(x) is increasing in (0,4π)
⇒ Option (B) is wrong.
Let h(x) = g(x) + g′(x)
⇒ ℎ‘(x)=g‘(x)+g”(x)=−2sinx<0 in x∈(0,2π)
⇒ g + g' is decreasing in (0,2π)
⇒ Option (C) is wrong.
Let J(x) = g(x) – g′(x)
J‘(x)=g‘(x)−g”(x)=2cosx>0 in (0,2π)
⇒ g – g′ is increasing in (0,2π)
⇒ Option (D) is correct.
So, the correct option is (D): g-g' is increasing in (0,2π)