Solveeit Logo

Question

Mathematics Question on Increasing and Decreasing Functions

Let g:(0,)Rg : (0, ∞) →R be a differentiable function such that (x(cosxsinx)ex+1+g(x)(ex+1xex)(ex+1)2)dx=xg(x)ex+1+c,∫(\frac {x(cos⁡x−sin⁡x)}{e^x+1} + \frac {g(x)(e^x+1−xe^x)}{(e^x+1)2})dx = \frac {xg(x)}{e^x+1}+c, for all x>0x>0, where c is an arbitrary constant. Then:

A

g is decreasing in (0,π4)(0, \frac \pi4)

B

g′ is increasing in (0,π4)(0, \frac \pi4)

C

g+g′ is increasing in (0,π2)(0, \frac \pi2)

D

g-g' is increasing in (0,π2)(0, \frac \pi2)

Answer

g-g' is increasing in (0,π2)(0, \frac \pi2)

Explanation

Solution

(x(cosxsinx)ex+1+g(x)(ex+1xex)(ex+1)2)dx=xg(x)ex+1+c,∫(\frac {x(cos⁡x−sin⁡x)}{e^x+1} + \frac {g(x)(e^x+1−xe^x)}{(e^x+1)2})dx = \frac {xg(x)}{e^x+1}+c,
Differentiating on both sides
x(cosxsinx)ex+1+g(x)(ex+1xex)(ex+1)2\frac {x(cos⁡x−sin⁡x)}{e^x+1} + \frac {g(x)(e^x+1−xe^x)}{(e^x+1)2}

=(ex+1)(g(x)+xg1x)xg(x)ex(ex+1)2=\frac {(e^x+1)(g(x)+xg^{\frac 1x})−xg(x)e^x}{(e^x+1)^2}
=g(x)[ex+1xex](ex+1)2+xg(x)(ex+1)(ex+1)2=\frac {g(x)[e^x+1−xe^x]}{(e^x+1)^2} +\frac {xg'(x)(e^x+1)}{(e^x+1)^2}

=x(cosxsinx)ex+1=\frac {x(cos⁡x−sin⁡x)}{e^x+1}
=xg(x)ex+1= \frac {xg'(x)}{e^x+1}

⇒ g‘(x)=cos⁡x−sin⁡x>0 in (0,π4)(0, \frac \pi4)
⇒ g(x) is increasing in (0,π4)(0, \frac \pi4)
⇒ Option (A) is wrong.

Now,
g”(x)=−sin⁡x−cos⁡x<0 in (0,π4)(0, \frac \pi4)
⇒ g(x) is increasing in (0,π4)(0, \frac \pi4)
⇒ Option (B) is wrong.

Let h(x) = g(x) + g′(x)
⇒ ℎ‘(x)=g‘(x)+g”(x)=−2sin⁡x<0 in x∈(0,π2)(0, \frac \pi2)
⇒ g + g' is decreasing in (0,π2)(0, \frac \pi2)
⇒ Option (C) is wrong.

Let J(x) = g(x) – g′(x)
J‘(x)=g‘(x)−g”(x)=2cos⁡x>0 in (0,π2)(0, \frac \pi2)
⇒ g – g′ is increasing in (0,π2)(0, \frac \pi2)
⇒ Option (D) is correct.

So, the correct option is (D): g-g' is increasing in (0,π2)(0, \frac \pi2)