Solveeit Logo

Question

Question: Let $f(x)=\int \frac{1+(x \ln x)^2}{x \ln x}dx$ such that $f(e)=\frac{e^2}{4}$. Then the value of $4...

Let f(x)=1+(xlnx)2xlnxdxf(x)=\int \frac{1+(x \ln x)^2}{x \ln x}dx such that f(e)=e24f(e)=\frac{e^2}{4}. Then the value of 4(e2f(1e)+1)4\left(e^2f\left(\frac{1}{e}\right)+1\right) is

Answer

1

Explanation

Solution

To find the value of 4(e2f(1e)+1)4\left(e^2f\left(\frac{1}{e}\right)+1\right), we first need to determine the function f(x)f(x) by evaluating the given integral and then use the initial condition to find the constant of integration.

The given integral is f(x)=1+(xlnx)2xlnxdxf(x)=\int \frac{1+(x \ln x)^2}{x \ln x}dx. We can split the integrand into two parts: f(x)=(1xlnx+(xlnx)2xlnx)dxf(x)=\int \left(\frac{1}{x \ln x} + \frac{(x \ln x)^2}{x \ln x}\right)dx f(x)=(1xlnx+xlnx)dxf(x)=\int \left(\frac{1}{x \ln x} + x \ln x\right)dx This can be written as the sum of two integrals: f(x)=1xlnxdx+xlnxdxf(x)=\int \frac{1}{x \ln x} dx + \int x \ln x dx

Let's evaluate the first integral, I1=1xlnxdxI_1 = \int \frac{1}{x \ln x} dx: Let u=lnxu = \ln x. Then, du=1xdxdu = \frac{1}{x} dx. Substituting these into the integral: I1=1udu=lnu+C1=lnlnx+C1I_1 = \int \frac{1}{u} du = \ln|u| + C_1 = \ln|\ln x| + C_1.

Now, let's evaluate the second integral, I2=xlnxdxI_2 = \int x \ln x dx: We use integration by parts, which states pdq=pqqdp\int p dq = pq - \int q dp. Let p=lnxp = \ln x and dq=xdxdq = x dx. Then, dp=1xdxdp = \frac{1}{x} dx and q=x22q = \frac{x^2}{2}. Substituting these into the integration by parts formula: I2=(lnx)(x22)(x22)(1x)dxI_2 = (\ln x)\left(\frac{x^2}{2}\right) - \int \left(\frac{x^2}{2}\right)\left(\frac{1}{x}\right) dx I2=x22lnxx2dxI_2 = \frac{x^2}{2} \ln x - \int \frac{x}{2} dx I2=x22lnxx24+C2I_2 = \frac{x^2}{2} \ln x - \frac{x^2}{4} + C_2.

Combining the results for I1I_1 and I2I_2, we get the function f(x)f(x): f(x)=lnlnx+x22lnxx24+Cf(x) = \ln|\ln x| + \frac{x^2}{2} \ln x - \frac{x^2}{4} + C, where C=C1+C2C = C_1 + C_2.

Next, we use the given condition f(e)=e24f(e)=\frac{e^2}{4} to find the value of CC. Substitute x=ex=e into the expression for f(x)f(x): f(e)=lnlne+e22lnee24+Cf(e) = \ln|\ln e| + \frac{e^2}{2} \ln e - \frac{e^2}{4} + C Since lne=1\ln e = 1: f(e)=ln1+e22(1)e24+Cf(e) = \ln|1| + \frac{e^2}{2}(1) - \frac{e^2}{4} + C f(e)=0+e22e24+Cf(e) = 0 + \frac{e^2}{2} - \frac{e^2}{4} + C f(e)=2e2e24+Cf(e) = \frac{2e^2 - e^2}{4} + C f(e)=e24+Cf(e) = \frac{e^2}{4} + C. We are given that f(e)=e24f(e)=\frac{e^2}{4}. Therefore: e24=e24+C\frac{e^2}{4} = \frac{e^2}{4} + C This implies C=0C=0.

So, the function f(x)f(x) is: f(x)=lnlnx+x22lnxx24f(x) = \ln|\ln x| + \frac{x^2}{2} \ln x - \frac{x^2}{4}.

Finally, we need to find the value of 4(e2f(1e)+1)4\left(e^2f\left(\frac{1}{e}\right)+1\right). First, let's evaluate f(1e)f\left(\frac{1}{e}\right): Substitute x=1ex=\frac{1}{e} into the expression for f(x)f(x): f(1e)=lnln(1e)+(1e)22ln(1e)(1e)24f\left(\frac{1}{e}\right) = \ln\left|\ln\left(\frac{1}{e}\right)\right| + \frac{\left(\frac{1}{e}\right)^2}{2} \ln\left(\frac{1}{e}\right) - \frac{\left(\frac{1}{e}\right)^2}{4} We know that ln(1e)=ln(e1)=1\ln\left(\frac{1}{e}\right) = \ln(e^{-1}) = -1. So, f(1e)=ln1+12e2(1)14e2f\left(\frac{1}{e}\right) = \ln|-1| + \frac{1}{2e^2}(-1) - \frac{1}{4e^2} Since ln1=ln(1)=0\ln|-1| = \ln(1) = 0: f(1e)=012e214e2f\left(\frac{1}{e}\right) = 0 - \frac{1}{2e^2} - \frac{1}{4e^2} f(1e)=24e214e2f\left(\frac{1}{e}\right) = -\frac{2}{4e^2} - \frac{1}{4e^2} f(1e)=34e2f\left(\frac{1}{e}\right) = -\frac{3}{4e^2}.

Now, substitute this value into the expression 4(e2f(1e)+1)4\left(e^2f\left(\frac{1}{e}\right)+1\right): 4(e2(34e2)+1)4\left(e^2\left(-\frac{3}{4e^2}\right)+1\right) =4(34+1)= 4\left(-\frac{3}{4}+1\right) =4(3+44)= 4\left(\frac{-3+4}{4}\right) =4(14)= 4\left(\frac{1}{4}\right) =1= 1.

The final answer is 1\boxed{1}.

Explanation of the solution:

  1. Decompose the integral: The integrand 1+(xlnx)2xlnx\frac{1+(x \ln x)^2}{x \ln x} is split into two simpler terms: 1xlnx\frac{1}{x \ln x} and xlnxx \ln x.
  2. Integrate each term:
    • 1xlnxdx\int \frac{1}{x \ln x} dx: Use substitution u=lnxu = \ln x, leading to lnlnx\ln|\ln x|.
    • xlnxdx\int x \ln x dx: Use integration by parts, leading to x22lnxx24\frac{x^2}{2} \ln x - \frac{x^2}{4}.
  3. Combine and find constant: Sum the results of the two integrals to get f(x)=lnlnx+x22lnxx24+Cf(x) = \ln|\ln x| + \frac{x^2}{2} \ln x - \frac{x^2}{4} + C. Use the condition f(e)=e24f(e) = \frac{e^2}{4} to determine C=0C=0.
  4. Evaluate at specific point: Calculate f(1e)f\left(\frac{1}{e}\right) by substituting x=1ex=\frac{1}{e} into the derived f(x)f(x), which gives 34e2-\frac{3}{4e^2}.
  5. Final calculation: Substitute f(1e)f\left(\frac{1}{e}\right) into the expression 4(e2f(1e)+1)4\left(e^2f\left(\frac{1}{e}\right)+1\right) and simplify to get 1.